tfa_output_2025_m02_d07_t07h_45m_38s
This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1965
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 1.3072 |
4.0374 | 0.0030 | 1 | 1.3072 |
3.7206 | 0.0060 | 2 | 1.3073 |
3.6304 | 0.0090 | 3 | 1.3075 |
3.9205 | 0.0119 | 4 | 1.3072 |
3.8914 | 0.0149 | 5 | 1.3074 |
3.7914 | 0.0179 | 6 | 1.3071 |
3.6888 | 0.0209 | 7 | 1.3073 |
3.9573 | 0.0239 | 8 | 1.3068 |
3.9216 | 0.0269 | 9 | 1.3068 |
3.8295 | 0.0299 | 10 | 1.3065 |
3.7775 | 0.0328 | 11 | 1.3061 |
4.1608 | 0.0358 | 12 | 1.3056 |
3.8315 | 0.0388 | 13 | 1.3047 |
3.8961 | 0.0418 | 14 | 1.3041 |
3.5064 | 0.0448 | 15 | 1.3034 |
3.8623 | 0.0478 | 16 | 1.3029 |
3.7882 | 0.0507 | 17 | 1.3022 |
3.9906 | 0.0537 | 18 | 1.3004 |
3.8721 | 0.0567 | 19 | 1.2990 |
3.8715 | 0.0597 | 20 | 1.2982 |
3.7604 | 0.0627 | 21 | 1.2970 |
3.7259 | 0.0657 | 22 | 1.2961 |
3.769 | 0.0687 | 23 | 1.2948 |
3.9388 | 0.0716 | 24 | 1.2935 |
3.8075 | 0.0746 | 25 | 1.2921 |
3.9561 | 0.0776 | 26 | 1.2913 |
3.8021 | 0.0806 | 27 | 1.2904 |
3.658 | 0.0836 | 28 | 1.2892 |
3.7469 | 0.0866 | 29 | 1.2883 |
3.9257 | 0.0896 | 30 | 1.2873 |
3.7349 | 0.0925 | 31 | 1.2864 |
3.7425 | 0.0955 | 32 | 1.2854 |
3.3611 | 0.0985 | 33 | 1.2843 |
3.5493 | 0.1015 | 34 | 1.2833 |
3.596 | 0.1045 | 35 | 1.2828 |
3.8972 | 0.1075 | 36 | 1.2816 |
3.9669 | 0.1104 | 37 | 1.2808 |
4.0005 | 0.1134 | 38 | 1.2800 |
3.6185 | 0.1164 | 39 | 1.2785 |
4.0852 | 0.1194 | 40 | 1.2776 |
3.452 | 0.1224 | 41 | 1.2769 |
4.017 | 0.1254 | 42 | 1.2761 |
3.8406 | 0.1284 | 43 | 1.2753 |
3.5601 | 0.1313 | 44 | 1.2746 |
3.7764 | 0.1343 | 45 | 1.2731 |
3.8586 | 0.1373 | 46 | 1.2722 |
3.2432 | 0.1403 | 47 | 1.2715 |
3.5002 | 0.1433 | 48 | 1.2706 |
3.4933 | 0.1463 | 49 | 1.2701 |
3.5798 | 0.1493 | 50 | 1.2688 |
3.6943 | 0.1522 | 51 | 1.2681 |
3.3713 | 0.1552 | 52 | 1.2675 |
3.6274 | 0.1582 | 53 | 1.2666 |
3.5537 | 0.1612 | 54 | 1.2653 |
3.5242 | 0.1642 | 55 | 1.2646 |
3.6243 | 0.1672 | 56 | 1.2637 |
3.4449 | 0.1701 | 57 | 1.2630 |
3.6649 | 0.1731 | 58 | 1.2621 |
3.643 | 0.1761 | 59 | 1.2615 |
3.5039 | 0.1791 | 60 | 1.2607 |
3.7135 | 0.1821 | 61 | 1.2595 |
3.8718 | 0.1851 | 62 | 1.2587 |
3.4509 | 0.1881 | 63 | 1.2581 |
3.7153 | 0.1910 | 64 | 1.2569 |
3.6279 | 0.1940 | 65 | 1.2564 |
3.1831 | 0.1970 | 66 | 1.2557 |
3.6647 | 0.2 | 67 | 1.2548 |
3.8362 | 0.2030 | 68 | 1.2543 |
3.7985 | 0.2060 | 69 | 1.2533 |
3.6422 | 0.2090 | 70 | 1.2525 |
3.4649 | 0.2119 | 71 | 1.2522 |
3.645 | 0.2149 | 72 | 1.2518 |
3.6387 | 0.2179 | 73 | 1.2508 |
3.6069 | 0.2209 | 74 | 1.2500 |
3.297 | 0.2239 | 75 | 1.2492 |
3.2928 | 0.2269 | 76 | 1.2487 |
3.4727 | 0.2299 | 77 | 1.2482 |
3.2704 | 0.2328 | 78 | 1.2473 |
3.4458 | 0.2358 | 79 | 1.2467 |
3.492 | 0.2388 | 80 | 1.2458 |
3.5288 | 0.2418 | 81 | 1.2453 |
3.6266 | 0.2448 | 82 | 1.2447 |
3.6181 | 0.2478 | 83 | 1.2442 |
3.4847 | 0.2507 | 84 | 1.2434 |
3.7349 | 0.2537 | 85 | 1.2431 |
3.7247 | 0.2567 | 86 | 1.2424 |
3.3359 | 0.2597 | 87 | 1.2419 |
3.3628 | 0.2627 | 88 | 1.2408 |
3.6579 | 0.2657 | 89 | 1.2408 |
3.601 | 0.2687 | 90 | 1.2406 |
3.1941 | 0.2716 | 91 | 1.2399 |
3.5671 | 0.2746 | 92 | 1.2395 |
3.7115 | 0.2776 | 93 | 1.2385 |
3.532 | 0.2806 | 94 | 1.2381 |
3.5191 | 0.2836 | 95 | 1.2374 |
3.6731 | 0.2866 | 96 | 1.2371 |
3.7962 | 0.2896 | 97 | 1.2367 |
3.7644 | 0.2925 | 98 | 1.2361 |
3.4904 | 0.2955 | 99 | 1.2356 |
3.5935 | 0.2985 | 100 | 1.2354 |
3.577 | 0.3015 | 101 | 1.2346 |
3.693 | 0.3045 | 102 | 1.2344 |
3.6223 | 0.3075 | 103 | 1.2340 |
3.4485 | 0.3104 | 104 | 1.2334 |
3.4748 | 0.3134 | 105 | 1.2329 |
3.4188 | 0.3164 | 106 | 1.2324 |
3.5004 | 0.3194 | 107 | 1.2321 |
3.6142 | 0.3224 | 108 | 1.2317 |
3.3817 | 0.3254 | 109 | 1.2313 |
3.5531 | 0.3284 | 110 | 1.2311 |
3.1087 | 0.3313 | 111 | 1.2306 |
3.3683 | 0.3343 | 112 | 1.2304 |
3.8721 | 0.3373 | 113 | 1.2298 |
3.7024 | 0.3403 | 114 | 1.2293 |
3.5345 | 0.3433 | 115 | 1.2289 |
3.573 | 0.3463 | 116 | 1.2287 |
3.5846 | 0.3493 | 117 | 1.2284 |
3.5404 | 0.3522 | 118 | 1.2282 |
3.5606 | 0.3552 | 119 | 1.2280 |
3.5055 | 0.3582 | 120 | 1.2274 |
3.4956 | 0.3612 | 121 | 1.2270 |
3.608 | 0.3642 | 122 | 1.2268 |
3.2361 | 0.3672 | 123 | 1.2265 |
3.488 | 0.3701 | 124 | 1.2265 |
3.2155 | 0.3731 | 125 | 1.2260 |
3.3639 | 0.3761 | 126 | 1.2256 |
3.3634 | 0.3791 | 127 | 1.2256 |
3.4846 | 0.3821 | 128 | 1.2254 |
3.5508 | 0.3851 | 129 | 1.2252 |
3.5719 | 0.3881 | 130 | 1.2246 |
3.3178 | 0.3910 | 131 | 1.2247 |
3.4262 | 0.3940 | 132 | 1.2243 |
3.4895 | 0.3970 | 133 | 1.2239 |
3.5872 | 0.4 | 134 | 1.2234 |
3.4766 | 0.4030 | 135 | 1.2233 |
3.3568 | 0.4060 | 136 | 1.2230 |
3.5747 | 0.4090 | 137 | 1.2230 |
2.9403 | 0.4119 | 138 | 1.2226 |
3.3463 | 0.4149 | 139 | 1.2223 |
3.3048 | 0.4179 | 140 | 1.2217 |
3.2987 | 0.4209 | 141 | 1.2218 |
3.4811 | 0.4239 | 142 | 1.2216 |
3.64 | 0.4269 | 143 | 1.2211 |
3.1703 | 0.4299 | 144 | 1.2206 |
3.2906 | 0.4328 | 145 | 1.2205 |
3.6134 | 0.4358 | 146 | 1.2199 |
3.348 | 0.4388 | 147 | 1.2197 |
3.2428 | 0.4418 | 148 | 1.2198 |
3.573 | 0.4448 | 149 | 1.2197 |
3.6921 | 0.4478 | 150 | 1.2191 |
3.5082 | 0.4507 | 151 | 1.2191 |
3.3445 | 0.4537 | 152 | 1.2189 |
3.3521 | 0.4567 | 153 | 1.2187 |
3.4538 | 0.4597 | 154 | 1.2183 |
3.3225 | 0.4627 | 155 | 1.2179 |
3.6838 | 0.4657 | 156 | 1.2179 |
3.3113 | 0.4687 | 157 | 1.2177 |
3.4141 | 0.4716 | 158 | 1.2175 |
2.8407 | 0.4746 | 159 | 1.2173 |
3.3262 | 0.4776 | 160 | 1.2168 |
3.6585 | 0.4806 | 161 | 1.2167 |
3.4489 | 0.4836 | 162 | 1.2166 |
3.6269 | 0.4866 | 163 | 1.2162 |
3.3826 | 0.4896 | 164 | 1.2160 |
3.4506 | 0.4925 | 165 | 1.2159 |
3.2749 | 0.4955 | 166 | 1.2151 |
3.7262 | 0.4985 | 167 | 1.2151 |
3.4615 | 0.5015 | 168 | 1.2147 |
3.5982 | 0.5045 | 169 | 1.2149 |
3.5301 | 0.5075 | 170 | 1.2142 |
3.1629 | 0.5104 | 171 | 1.2145 |
3.3415 | 0.5134 | 172 | 1.2140 |
3.2653 | 0.5164 | 173 | 1.2139 |
3.2757 | 0.5194 | 174 | 1.2137 |
3.3495 | 0.5224 | 175 | 1.2136 |
3.4542 | 0.5254 | 176 | 1.2135 |
3.5153 | 0.5284 | 177 | 1.2130 |
3.2836 | 0.5313 | 178 | 1.2126 |
3.2877 | 0.5343 | 179 | 1.2123 |
3.4662 | 0.5373 | 180 | 1.2125 |
3.0825 | 0.5403 | 181 | 1.2123 |
3.381 | 0.5433 | 182 | 1.2121 |
3.3843 | 0.5463 | 183 | 1.2118 |
3.0211 | 0.5493 | 184 | 1.2116 |
3.2045 | 0.5522 | 185 | 1.2113 |
3.515 | 0.5552 | 186 | 1.2111 |
3.3176 | 0.5582 | 187 | 1.2113 |
3.5145 | 0.5612 | 188 | 1.2109 |
3.135 | 0.5642 | 189 | 1.2106 |
3.5442 | 0.5672 | 190 | 1.2107 |
3.3991 | 0.5701 | 191 | 1.2106 |
3.2577 | 0.5731 | 192 | 1.2103 |
3.286 | 0.5761 | 193 | 1.2102 |
3.4492 | 0.5791 | 194 | 1.2097 |
3.7012 | 0.5821 | 195 | 1.2098 |
3.2023 | 0.5851 | 196 | 1.2097 |
3.207 | 0.5881 | 197 | 1.2097 |
3.3281 | 0.5910 | 198 | 1.2091 |
3.3071 | 0.5940 | 199 | 1.2091 |
3.39 | 0.5970 | 200 | 1.2091 |
3.2437 | 0.6 | 201 | 1.2090 |
3.2771 | 0.6030 | 202 | 1.2089 |
3.4758 | 0.6060 | 203 | 1.2085 |
3.2785 | 0.6090 | 204 | 1.2082 |
3.524 | 0.6119 | 205 | 1.2084 |
3.3163 | 0.6149 | 206 | 1.2082 |
3.3725 | 0.6179 | 207 | 1.2078 |
3.4803 | 0.6209 | 208 | 1.2078 |
3.1456 | 0.6239 | 209 | 1.2080 |
3.2719 | 0.6269 | 210 | 1.2079 |
3.4017 | 0.6299 | 211 | 1.2074 |
3.3843 | 0.6328 | 212 | 1.2073 |
3.5353 | 0.6358 | 213 | 1.2070 |
3.2673 | 0.6388 | 214 | 1.2072 |
3.2824 | 0.6418 | 215 | 1.2070 |
3.3562 | 0.6448 | 216 | 1.2069 |
3.1972 | 0.6478 | 217 | 1.2069 |
3.3425 | 0.6507 | 218 | 1.2067 |
3.1529 | 0.6537 | 219 | 1.2066 |
3.0392 | 0.6567 | 220 | 1.2062 |
2.9891 | 0.6597 | 221 | 1.2063 |
3.451 | 0.6627 | 222 | 1.2059 |
3.19 | 0.6657 | 223 | 1.2061 |
3.2682 | 0.6687 | 224 | 1.2057 |
3.4182 | 0.6716 | 225 | 1.2055 |
3.4638 | 0.6746 | 226 | 1.2054 |
3.2297 | 0.6776 | 227 | 1.2053 |
3.3207 | 0.6806 | 228 | 1.2051 |
3.2218 | 0.6836 | 229 | 1.2051 |
3.2048 | 0.6866 | 230 | 1.2049 |
3.1883 | 0.6896 | 231 | 1.2050 |
3.5168 | 0.6925 | 232 | 1.2048 |
3.4838 | 0.6955 | 233 | 1.2047 |
3.148 | 0.6985 | 234 | 1.2050 |
3.35 | 0.7015 | 235 | 1.2045 |
3.156 | 0.7045 | 236 | 1.2043 |
3.2269 | 0.7075 | 237 | 1.2045 |
3.1877 | 0.7104 | 238 | 1.2039 |
3.4361 | 0.7134 | 239 | 1.2041 |
3.2583 | 0.7164 | 240 | 1.2039 |
3.3384 | 0.7194 | 241 | 1.2037 |
3.235 | 0.7224 | 242 | 1.2038 |
3.2664 | 0.7254 | 243 | 1.2037 |
3.1289 | 0.7284 | 244 | 1.2033 |
3.4714 | 0.7313 | 245 | 1.2035 |
3.4815 | 0.7343 | 246 | 1.2035 |
3.5291 | 0.7373 | 247 | 1.2033 |
3.2485 | 0.7403 | 248 | 1.2032 |
3.3338 | 0.7433 | 249 | 1.2028 |
3.0806 | 0.7463 | 250 | 1.2030 |
3.3287 | 0.7493 | 251 | 1.2027 |
3.4036 | 0.7522 | 252 | 1.2025 |
3.2587 | 0.7552 | 253 | 1.2024 |
2.8553 | 0.7582 | 254 | 1.2025 |
3.3085 | 0.7612 | 255 | 1.2022 |
3.0679 | 0.7642 | 256 | 1.2023 |
3.2612 | 0.7672 | 257 | 1.2022 |
3.5312 | 0.7701 | 258 | 1.2021 |
3.2655 | 0.7731 | 259 | 1.2018 |
3.054 | 0.7761 | 260 | 1.2018 |
3.306 | 0.7791 | 261 | 1.2017 |
3.2836 | 0.7821 | 262 | 1.2015 |
2.992 | 0.7851 | 263 | 1.2014 |
3.2031 | 0.7881 | 264 | 1.2013 |
3.4771 | 0.7910 | 265 | 1.2013 |
3.2433 | 0.7940 | 266 | 1.2011 |
3.0587 | 0.7970 | 267 | 1.2012 |
3.0495 | 0.8 | 268 | 1.2012 |
3.3093 | 0.8030 | 269 | 1.2008 |
3.3915 | 0.8060 | 270 | 1.2010 |
3.345 | 0.8090 | 271 | 1.2008 |
3.1808 | 0.8119 | 272 | 1.2006 |
3.209 | 0.8149 | 273 | 1.2007 |
3.0482 | 0.8179 | 274 | 1.2004 |
2.9668 | 0.8209 | 275 | 1.2006 |
3.0532 | 0.8239 | 276 | 1.2008 |
3.3684 | 0.8269 | 277 | 1.2004 |
3.2661 | 0.8299 | 278 | 1.2003 |
3.0364 | 0.8328 | 279 | 1.2003 |
3.4541 | 0.8358 | 280 | 1.2002 |
3.3404 | 0.8388 | 281 | 1.2001 |
3.4284 | 0.8418 | 282 | 1.1999 |
3.4654 | 0.8448 | 283 | 1.1997 |
3.0229 | 0.8478 | 284 | 1.2000 |
3.2988 | 0.8507 | 285 | 1.1999 |
3.3894 | 0.8537 | 286 | 1.1995 |
3.2594 | 0.8567 | 287 | 1.1995 |
3.2245 | 0.8597 | 288 | 1.1995 |
3.0186 | 0.8627 | 289 | 1.1991 |
3.0315 | 0.8657 | 290 | 1.1990 |
2.8311 | 0.8687 | 291 | 1.1990 |
3.1816 | 0.8716 | 292 | 1.1988 |
3.3245 | 0.8746 | 293 | 1.1987 |
3.434 | 0.8776 | 294 | 1.1988 |
3.09 | 0.8806 | 295 | 1.1986 |
3.4151 | 0.8836 | 296 | 1.1983 |
3.2193 | 0.8866 | 297 | 1.1984 |
3.3492 | 0.8896 | 298 | 1.1985 |
3.1033 | 0.8925 | 299 | 1.1983 |
3.3869 | 0.8955 | 300 | 1.1984 |
3.2651 | 0.8985 | 301 | 1.1981 |
3.3921 | 0.9015 | 302 | 1.1981 |
3.3988 | 0.9045 | 303 | 1.1981 |
3.3168 | 0.9075 | 304 | 1.1983 |
3.173 | 0.9104 | 305 | 1.1980 |
3.1127 | 0.9134 | 306 | 1.1981 |
2.9588 | 0.9164 | 307 | 1.1979 |
3.1549 | 0.9194 | 308 | 1.1978 |
3.1344 | 0.9224 | 309 | 1.1978 |
3.0571 | 0.9254 | 310 | 1.1977 |
3.299 | 0.9284 | 311 | 1.1976 |
3.3548 | 0.9313 | 312 | 1.1975 |
3.1675 | 0.9343 | 313 | 1.1975 |
3.2788 | 0.9373 | 314 | 1.1972 |
3.1682 | 0.9403 | 315 | 1.1975 |
3.6201 | 0.9433 | 316 | 1.1973 |
2.9316 | 0.9463 | 317 | 1.1973 |
3.2871 | 0.9493 | 318 | 1.1970 |
3.0758 | 0.9522 | 319 | 1.1973 |
3.0506 | 0.9552 | 320 | 1.1972 |
3.0749 | 0.9582 | 321 | 1.1971 |
3.0325 | 0.9612 | 322 | 1.1969 |
3.0342 | 0.9642 | 323 | 1.1969 |
3.2879 | 0.9672 | 324 | 1.1969 |
2.9969 | 0.9701 | 325 | 1.1967 |
3.4164 | 0.9731 | 326 | 1.1967 |
3.3712 | 0.9761 | 327 | 1.1966 |
3.1877 | 0.9791 | 328 | 1.1967 |
3.3259 | 0.9821 | 329 | 1.1968 |
3.2571 | 0.9851 | 330 | 1.1965 |
3.0292 | 0.9881 | 331 | 1.1968 |
3.2312 | 0.9910 | 332 | 1.1966 |
3.3412 | 0.9940 | 333 | 1.1965 |
3.2653 | 0.9970 | 334 | 1.1966 |
3.3735 | 1.0 | 335 | 1.1965 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for brando/tfa_output_2025_m02_d07_t07h_45m_38s
Base model
Qwen/Qwen2.5-0.5B