|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:314315 |
|
- loss:AdaptiveLayerLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: microsoft/deberta-v3-small |
|
datasets: |
|
- stanfordnlp/snli |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
widget: |
|
- source_sentence: The pitcher is pitching the ball in a game of baseball. |
|
sentences: |
|
- the lady digs into the ground |
|
- A group of people are sitting at tables. |
|
- The pitcher throws the ball. |
|
- source_sentence: People are conversing at a dining table under a canopy. |
|
sentences: |
|
- A canine is using his legs. |
|
- The people are creative. |
|
- People at a party are seated for dinner on the lawn. |
|
- source_sentence: Two teenage girls conversing next to lockers. |
|
sentences: |
|
- Girls talking about their problems next to lockers. |
|
- A group of people play in the ocean. |
|
- The man is testing the bike. |
|
- source_sentence: A young boy in a hoodie climbs a red slide sitting on a red and |
|
green checkered background. |
|
sentences: |
|
- People are buying food from a street vendor. |
|
- A boy is playing. |
|
- A dog outside digging. |
|
- source_sentence: A professional swimmer spits water out after surfacing while grabbing |
|
the hand of someone helping him back to land. |
|
sentences: |
|
- A group of people wait in a line. |
|
- A tourist has his picture taken on Easter Island. |
|
- The swimmer almost drowned after being sucked under a fast current. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on microsoft/deberta-v3-small |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.6578209113655319 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.7228835821151733 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.7058138858173776 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.6018929481506348 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.586687306501548 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.8856433474514386 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.6972177912771047 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.6157403897187049 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 240.6935577392578 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.6994949494949494 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 180.59024047851562 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.5603834989884774 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.9304805024098145 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.6228322985998769 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.6658579118962772 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 281.63262939453125 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.7096774193548386 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 315.9024658203125 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.6168446026097272 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.8354023659997079 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.7109579985461502 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.6626734399878687 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 14.194840431213379 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.7064288581751448 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 17.004133224487305 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.581586402266289 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.8995180370965387 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.7094433163219231 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.6658579118962772 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 281.63262939453125 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.7096774193548386 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 315.9024658203125 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.6168446026097272 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.9304805024098145 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.7109579985461502 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on microsoft/deberta-v3-small |
|
|
|
[n_layers_per_step = -1, last_layer_weight = 1 * (model_layers-1), prior_layers_weight= 0.85, kl_div_weight = 2, kl_temperature= 10, lr = 1e-6. batch = 42, schedule = cosine] |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm") |
|
# Run inference |
|
sentences = [ |
|
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.', |
|
'The swimmer almost drowned after being sucked under a fast current.', |
|
'A group of people wait in a line.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:----------| |
|
| cosine_accuracy | 0.6578 | |
|
| cosine_accuracy_threshold | 0.7229 | |
|
| cosine_f1 | 0.7058 | |
|
| cosine_f1_threshold | 0.6019 | |
|
| cosine_precision | 0.5867 | |
|
| cosine_recall | 0.8856 | |
|
| cosine_ap | 0.6972 | |
|
| dot_accuracy | 0.6157 | |
|
| dot_accuracy_threshold | 240.6936 | |
|
| dot_f1 | 0.6995 | |
|
| dot_f1_threshold | 180.5902 | |
|
| dot_precision | 0.5604 | |
|
| dot_recall | 0.9305 | |
|
| dot_ap | 0.6228 | |
|
| manhattan_accuracy | 0.6659 | |
|
| manhattan_accuracy_threshold | 281.6326 | |
|
| manhattan_f1 | 0.7097 | |
|
| manhattan_f1_threshold | 315.9025 | |
|
| manhattan_precision | 0.6168 | |
|
| manhattan_recall | 0.8354 | |
|
| manhattan_ap | 0.711 | |
|
| euclidean_accuracy | 0.6627 | |
|
| euclidean_accuracy_threshold | 14.1948 | |
|
| euclidean_f1 | 0.7064 | |
|
| euclidean_f1_threshold | 17.0041 | |
|
| euclidean_precision | 0.5816 | |
|
| euclidean_recall | 0.8995 | |
|
| euclidean_ap | 0.7094 | |
|
| max_accuracy | 0.6659 | |
|
| max_accuracy_threshold | 281.6326 | |
|
| max_f1 | 0.7097 | |
|
| max_f1_threshold | 315.9025 | |
|
| max_precision | 0.6168 | |
|
| max_recall | 0.9305 | |
|
| **max_ap** | **0.711** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### stanfordnlp/snli |
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) |
|
* Size: 314,315 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> | |
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> | |
|
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"n_layers_per_step": -1, |
|
"last_layer_weight": 6, |
|
"prior_layers_weight": 0.85, |
|
"kl_div_weight": 2, |
|
"kl_temperature": 10 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### stanfordnlp/snli |
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) |
|
* Size: 13,189 evaluation samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.53 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:---------------| |
|
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church has cracks in the ceiling.</code> | <code>0</code> | |
|
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>1</code> | |
|
| <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is young.</code> | <code>0</code> | |
|
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"n_layers_per_step": -1, |
|
"last_layer_weight": 6, |
|
"prior_layers_weight": 0.85, |
|
"kl_div_weight": 2, |
|
"kl_temperature": 10 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 42 |
|
- `per_device_eval_batch_size`: 32 |
|
- `learning_rate`: 1e-06 |
|
- `weight_decay`: 1e-08 |
|
- `num_train_epochs`: 1 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.2 |
|
- `save_safetensors`: False |
|
- `fp16`: True |
|
- `hub_model_id`: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmp |
|
- `hub_strategy`: checkpoint |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 42 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 1e-06 |
|
- `weight_decay`: 1e-08 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.2 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: False |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmp |
|
- `hub_strategy`: checkpoint |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | max_ap | |
|
|:------:|:----:|:-------------:|:-------:|:------:| |
|
| 0.0501 | 375 | 23.8735 | 21.0352 | 0.6131 | |
|
| 0.1002 | 750 | 22.4091 | 19.6992 | 0.6353 | |
|
| 0.1503 | 1125 | 19.4663 | 16.2104 | 0.6580 | |
|
| 0.2004 | 1500 | 15.348 | 13.2038 | 0.6732 | |
|
| 0.2505 | 1875 | 12.5377 | 11.6357 | 0.6815 | |
|
| 0.3006 | 2250 | 11.4576 | 10.7570 | 0.6862 | |
|
| 0.3507 | 2625 | 10.7446 | 10.1819 | 0.6891 | |
|
| 0.4009 | 3000 | 10.2323 | 9.7470 | 0.6904 | |
|
| 0.4510 | 3375 | 9.9825 | 9.4256 | 0.6914 | |
|
| 0.5011 | 3750 | 9.6954 | 9.2200 | 0.6923 | |
|
| 0.5512 | 4125 | 9.6359 | 9.0367 | 0.6923 | |
|
| 0.6013 | 4500 | 8.3103 | 7.8258 | 0.7026 | |
|
| 0.6514 | 4875 | 4.4845 | 7.4044 | 0.7073 | |
|
| 0.7015 | 5250 | 3.8303 | 7.2647 | 0.7092 | |
|
| 0.7516 | 5625 | 3.5617 | 7.2020 | 0.7098 | |
|
| 0.8017 | 6000 | 3.4088 | 7.1684 | 0.7103 | |
|
| 0.8518 | 6375 | 3.347 | 7.1531 | 0.7108 | |
|
| 0.9019 | 6750 | 3.2064 | 7.1451 | 0.7109 | |
|
| 0.9520 | 7125 | 3.3096 | 7.1427 | 0.7110 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### AdaptiveLayerLoss |
|
```bibtex |
|
@misc{li20242d, |
|
title={2D Matryoshka Sentence Embeddings}, |
|
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li}, |
|
year={2024}, |
|
eprint={2402.14776}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |