|
--- |
|
license: apache-2.0 |
|
base_model: indolem/indobertweet-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: classification-hate-speech-DE-14-twit |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# classification-hate-speech-DE-14-twit |
|
|
|
This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0647 |
|
- F1 macro: 0.4076 |
|
- Weighted: 0.5816 |
|
- Balanced accuracy: 0.5560 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 14 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 macro | Weighted | Balanced accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:| |
|
| 1.2717 | 1.0 | 152 | 1.1413 | 0.3986 | 0.6607 | 0.4780 | |
|
| 0.7363 | 2.0 | 304 | 1.2159 | 0.3829 | 0.6075 | 0.4706 | |
|
| 0.2523 | 3.0 | 456 | 1.4802 | 0.3994 | 0.6380 | 0.4901 | |
|
| 0.1209 | 4.0 | 608 | 1.9894 | 0.4200 | 0.6130 | 0.5900 | |
|
| 0.0201 | 5.0 | 760 | 2.7075 | 0.3731 | 0.5537 | 0.5221 | |
|
| 0.0052 | 6.0 | 912 | 2.4151 | 0.4301 | 0.6211 | 0.5905 | |
|
| 0.0012 | 7.0 | 1064 | 3.2430 | 0.3791 | 0.5228 | 0.5470 | |
|
| 0.0014 | 8.0 | 1216 | 2.7395 | 0.4054 | 0.6010 | 0.5485 | |
|
| 0.001 | 9.0 | 1368 | 2.6392 | 0.4167 | 0.6052 | 0.5505 | |
|
| 0.0005 | 10.0 | 1520 | 2.8755 | 0.4049 | 0.5893 | 0.5546 | |
|
| 0.0005 | 11.0 | 1672 | 2.7610 | 0.4152 | 0.6027 | 0.5560 | |
|
| 0.0009 | 12.0 | 1824 | 3.0945 | 0.4011 | 0.5710 | 0.5511 | |
|
| 0.0003 | 13.0 | 1976 | 3.1262 | 0.4003 | 0.5687 | 0.5506 | |
|
| 0.0004 | 14.0 | 2128 | 3.0647 | 0.4076 | 0.5816 | 0.5560 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|