from transformers import PretrainedConfig | |
class EmuruConfig(PretrainedConfig): | |
model_type = "emuru" | |
def __init__(self, | |
t5_name_or_path='google-t5/t5-large', | |
vae_name_or_path='blowing-up-groundhogs/emuru_vae', | |
tokenizer_name_or_path='google/byt5-small', | |
slices_per_query=1, | |
vae_channels=1, | |
**kwargs): | |
super().__init__(**kwargs) | |
self.t5_name_or_path = t5_name_or_path | |
self.vae_name_or_path = vae_name_or_path | |
self.tokenizer_name_or_path = tokenizer_name_or_path | |
self.slices_per_query = slices_per_query | |
self.vae_channels = vae_channels | |