Vittorio Pippi
commited on
Commit
·
5f68c1b
1
Parent(s):
19d8873
Rename configuration parameters in EmuruConfig for clarity
Browse files- configuration_emuru.py +6 -6
- modeling_emuru.bkp.py +0 -316
- modeling_emuru.py +235 -101
configuration_emuru.py
CHANGED
@@ -4,15 +4,15 @@ class EmuruConfig(PretrainedConfig):
|
|
4 |
model_type = "emuru"
|
5 |
|
6 |
def __init__(self,
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
slices_per_query=1,
|
11 |
vae_channels=1,
|
12 |
**kwargs):
|
13 |
super().__init__(**kwargs)
|
14 |
-
self.
|
15 |
-
self.
|
16 |
-
self.
|
17 |
self.slices_per_query = slices_per_query
|
18 |
self.vae_channels = vae_channels
|
|
|
4 |
model_type = "emuru"
|
5 |
|
6 |
def __init__(self,
|
7 |
+
t5_name_or_path='google-t5/t5-large',
|
8 |
+
vae_name_or_path='blowing-up-groundhogs/emuru_vae',
|
9 |
+
tokenizer_name_or_path='google/byt5-small',
|
10 |
slices_per_query=1,
|
11 |
vae_channels=1,
|
12 |
**kwargs):
|
13 |
super().__init__(**kwargs)
|
14 |
+
self.t5_name_or_path = t5_name_or_path
|
15 |
+
self.vae_name_or_path = vae_name_or_path
|
16 |
+
self.tokenizer_name_or_path = tokenizer_name_or_path
|
17 |
self.slices_per_query = slices_per_query
|
18 |
self.vae_channels = vae_channels
|
modeling_emuru.bkp.py
DELETED
@@ -1,316 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
|
4 |
-
from configuration_emuru import EmuruConfig
|
5 |
-
from diffusers import AutoencoderKL
|
6 |
-
from einops.layers.torch import Rearrange
|
7 |
-
from einops import repeat
|
8 |
-
from torchvision.transforms import functional as F
|
9 |
-
from typing import Optional, Tuple, List, Any
|
10 |
-
from PIL import Image
|
11 |
-
|
12 |
-
class Emuru(PreTrainedModel):
|
13 |
-
config_class = EmuruConfig
|
14 |
-
"""
|
15 |
-
Emuru is a conditional generative model that integrates a T5-based decoder with a VAE
|
16 |
-
for image generation conditioned on text and style images.
|
17 |
-
|
18 |
-
Attributes:
|
19 |
-
config_class (Type): Configuration class for the model.
|
20 |
-
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration.
|
21 |
-
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation.
|
22 |
-
sos (nn.Embedding): Start-of-sequence embedding.
|
23 |
-
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space.
|
24 |
-
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space.
|
25 |
-
padding_token (nn.Parameter): Non-trainable parameter for padding tokens.
|
26 |
-
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold.
|
27 |
-
vae (AutoencoderKL): Pre-trained Variational Autoencoder.
|
28 |
-
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries.
|
29 |
-
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions.
|
30 |
-
mse_criterion (nn.MSELoss): Mean squared error loss function.
|
31 |
-
"""
|
32 |
-
|
33 |
-
def __init__(self, config: EmuruConfig) -> None:
|
34 |
-
"""
|
35 |
-
Initialize the Emuru model.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
config (EmuruConfig): Configuration object containing model hyperparameters and paths.
|
39 |
-
"""
|
40 |
-
super().__init__(config)
|
41 |
-
|
42 |
-
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config)
|
43 |
-
|
44 |
-
t5_config = T5Config.from_pretrained(config.t5_config)
|
45 |
-
t5_config.vocab_size = len(self.tokenizer)
|
46 |
-
self.T5 = T5ForConditionalGeneration(t5_config)
|
47 |
-
self.T5.lm_head = nn.Identity()
|
48 |
-
self.sos = nn.Embedding(1, t5_config.d_model)
|
49 |
-
|
50 |
-
vae_latent_size = 8 * config.vae_channels * config.slices_per_query
|
51 |
-
self.vae_to_t5 = nn.Linear(vae_latent_size, t5_config.d_model)
|
52 |
-
self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False)
|
53 |
-
|
54 |
-
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
|
55 |
-
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
|
56 |
-
|
57 |
-
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
|
58 |
-
self.set_training(self.vae, False)
|
59 |
-
|
60 |
-
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
|
61 |
-
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
|
62 |
-
|
63 |
-
self.mse_criterion = nn.MSELoss()
|
64 |
-
self.init_weights()
|
65 |
-
|
66 |
-
def set_training(self, model: nn.Module, training: bool) -> None:
|
67 |
-
"""
|
68 |
-
Set the training mode for a given model and freeze/unfreeze parameters accordingly.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
model (nn.Module): The model to set the training mode for.
|
72 |
-
training (bool): If True, set the model to training mode; otherwise, evaluation mode.
|
73 |
-
"""
|
74 |
-
model.train() if training else model.eval()
|
75 |
-
for param in model.parameters():
|
76 |
-
param.requires_grad = training
|
77 |
-
|
78 |
-
def forward(
|
79 |
-
self,
|
80 |
-
img: Optional[torch.Tensor] = None,
|
81 |
-
input_ids: Optional[torch.Tensor] = None,
|
82 |
-
attention_mask: Optional[torch.Tensor] = None,
|
83 |
-
noise: float = 0,
|
84 |
-
**kwargs: Any
|
85 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
86 |
-
"""
|
87 |
-
Forward pass of the model.
|
88 |
-
|
89 |
-
Args:
|
90 |
-
img (Optional[torch.Tensor]): Input image tensor.
|
91 |
-
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
92 |
-
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs.
|
93 |
-
noise (float): Amount of noise to add in image encoding.
|
94 |
-
**kwargs: Additional arguments.
|
95 |
-
|
96 |
-
Returns:
|
97 |
-
Tuple containing:
|
98 |
-
- mse_loss (torch.Tensor): Mean squared error loss.
|
99 |
-
- pred_latent (torch.Tensor): Predicted latent representations.
|
100 |
-
- z (torch.Tensor): Sampled latent vector from VAE.
|
101 |
-
"""
|
102 |
-
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
|
103 |
-
|
104 |
-
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
|
105 |
-
vae_latent = self.t5_to_vae(output.logits[:, :-1])
|
106 |
-
pred_latent = self.z_rearrange(vae_latent)
|
107 |
-
|
108 |
-
mse_loss = self.mse_criterion(vae_latent, z_sequence)
|
109 |
-
return mse_loss, pred_latent, z
|
110 |
-
|
111 |
-
def generate(
|
112 |
-
self,
|
113 |
-
style_text: str,
|
114 |
-
gen_text: str,
|
115 |
-
style_img: torch.Tensor,
|
116 |
-
**kwargs: Any
|
117 |
-
) -> Image.Image:
|
118 |
-
"""
|
119 |
-
Generate an image by combining style and generation texts with a style image.
|
120 |
-
|
121 |
-
Args:
|
122 |
-
style_text (str): Style-related text prompt.
|
123 |
-
gen_text (str): Generation-related text prompt.
|
124 |
-
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D.
|
125 |
-
**kwargs: Additional keyword arguments.
|
126 |
-
|
127 |
-
Returns:
|
128 |
-
Image.Image: Generated image as a PIL image.
|
129 |
-
"""
|
130 |
-
if style_img.ndim == 3:
|
131 |
-
style_img = style_img.unsqueeze(0)
|
132 |
-
elif style_img.ndim == 4:
|
133 |
-
pass
|
134 |
-
else:
|
135 |
-
raise ValueError('style_img must be 3D or 4D')
|
136 |
-
|
137 |
-
texts = [style_text + ' ' + gen_text]
|
138 |
-
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs)
|
139 |
-
imgs = (imgs + 1) / 2
|
140 |
-
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu())
|
141 |
-
|
142 |
-
def generate_batch(
|
143 |
-
self,
|
144 |
-
style_texts: List[str],
|
145 |
-
gen_texts: List[str],
|
146 |
-
style_imgs: torch.Tensor,
|
147 |
-
lengths: List[int],
|
148 |
-
**kwargs: Any
|
149 |
-
) -> List[Image.Image]:
|
150 |
-
"""
|
151 |
-
Generate a batch of images from lists of style texts, generation texts, and style images.
|
152 |
-
|
153 |
-
Args:
|
154 |
-
style_texts (List[str]): List of style-related text prompts.
|
155 |
-
gen_texts (List[str]): List of generation-related text prompts.
|
156 |
-
style_imgs (torch.Tensor): Batch of style images (4D tensor).
|
157 |
-
lengths (List[int]): List of lengths corresponding to each image.
|
158 |
-
**kwargs: Additional keyword arguments.
|
159 |
-
|
160 |
-
Returns:
|
161 |
-
List[Image.Image]: List of generated images as PIL images.
|
162 |
-
"""
|
163 |
-
assert style_imgs.ndim == 4, 'style_imgs must be 4D'
|
164 |
-
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length'
|
165 |
-
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length'
|
166 |
-
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)]
|
167 |
-
|
168 |
-
imgs, _, img_ends = self._generate(texts=texts, imgs=style_imgs, lengths=lengths, **kwargs)
|
169 |
-
imgs = (imgs + 1) / 2
|
170 |
-
|
171 |
-
out_imgs = []
|
172 |
-
for i, end in enumerate(img_ends):
|
173 |
-
start = lengths[i]
|
174 |
-
out_imgs.append(F.to_pil_image(imgs[i, ..., start:end].detach().cpu()))
|
175 |
-
return out_imgs
|
176 |
-
|
177 |
-
def _generate(
|
178 |
-
self,
|
179 |
-
texts: Optional[List[str]] = None,
|
180 |
-
imgs: Optional[torch.Tensor] = None,
|
181 |
-
lengths: Optional[List[int]] = None,
|
182 |
-
input_ids: Optional[torch.Tensor] = None,
|
183 |
-
z_sequence: Optional[torch.Tensor] = None,
|
184 |
-
max_new_tokens: int = 256,
|
185 |
-
stopping_criteria: str = 'latent',
|
186 |
-
stopping_after: int = 10,
|
187 |
-
stopping_patience: int = 1
|
188 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
189 |
-
"""
|
190 |
-
Internal generation routine that combines textual and visual inputs to iteratively generate
|
191 |
-
latent representations and decode them into images.
|
192 |
-
|
193 |
-
Args:
|
194 |
-
texts (Optional[List[str]]): List of text prompts.
|
195 |
-
imgs (Optional[torch.Tensor]): Input image tensor.
|
196 |
-
lengths (Optional[List[int]]): Desired lengths for each image in latent space.
|
197 |
-
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
198 |
-
z_sequence (Optional[torch.Tensor]): Precomputed latent sequence.
|
199 |
-
max_new_tokens (int): Maximum tokens to generate.
|
200 |
-
stopping_criteria (str): Criteria for stopping ('latent' or 'none').
|
201 |
-
stopping_after (int): Number of tokens to check for stopping condition.
|
202 |
-
stopping_patience (int): Patience parameter for stopping condition.
|
203 |
-
|
204 |
-
Returns:
|
205 |
-
Tuple containing:
|
206 |
-
- imgs (torch.Tensor): Generated images.
|
207 |
-
- canvas_sequence (torch.Tensor): Generated latent canvas sequence.
|
208 |
-
- img_ends (torch.Tensor): End indices for each generated image.
|
209 |
-
"""
|
210 |
-
assert texts is not None or input_ids is not None, 'Either texts or input_ids must be provided'
|
211 |
-
assert imgs is not None or z_sequence is not None, 'Either imgs or z_sequence must be provided'
|
212 |
-
|
213 |
-
if input_ids is None:
|
214 |
-
input_ids = self.tokenizer(texts, return_tensors='pt', padding=True).input_ids
|
215 |
-
input_ids = input_ids.to(self.device)
|
216 |
-
|
217 |
-
if z_sequence is None:
|
218 |
-
_, z_sequence, _ = self._img_encode(imgs)
|
219 |
-
|
220 |
-
if lengths is None:
|
221 |
-
lengths = [imgs.size(-1)] * imgs.size(0)
|
222 |
-
lengths = torch.tensor(lengths).to(self.device)
|
223 |
-
lengths = (lengths / 8).ceil().int()
|
224 |
-
|
225 |
-
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens))
|
226 |
-
z_sequence_mask = z_sequence_mask.bool().to(self.device)
|
227 |
-
for i, l in enumerate(lengths):
|
228 |
-
z_sequence_mask[i, :l] = True
|
229 |
-
|
230 |
-
canvas_sequence = z_sequence[:, :lengths.min()]
|
231 |
-
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
232 |
-
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
|
233 |
-
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1
|
234 |
-
|
235 |
-
for token_idx in range(lengths.min(), lengths.max() + max_new_tokens):
|
236 |
-
if len(z_sequence) == 0:
|
237 |
-
decoder_inputs_embeds = sos
|
238 |
-
else:
|
239 |
-
decoder_inputs_embeds = self.vae_to_t5(canvas_sequence)
|
240 |
-
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
241 |
-
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
242 |
-
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
243 |
-
|
244 |
-
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1)
|
245 |
-
if token_idx < z_sequence.size(1):
|
246 |
-
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0])
|
247 |
-
else:
|
248 |
-
seq_slice = vae_latent[:, 0]
|
249 |
-
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1)
|
250 |
-
|
251 |
-
if stopping_criteria == 'latent':
|
252 |
-
similarity = torch.nn.functional.cosine_similarity(canvas_sequence, pad_token, dim=-1)
|
253 |
-
windows = (similarity > self.padding_token_threshold).unfold(1, stopping_after, 1)
|
254 |
-
window_sums = windows.to(torch.int).sum(dim=2)
|
255 |
-
|
256 |
-
for i in range(similarity.size(0)):
|
257 |
-
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0]
|
258 |
-
if idx.numel() > 0:
|
259 |
-
seq_stops[i] = idx[0].item()
|
260 |
-
|
261 |
-
if torch.all(seq_stops >= 0):
|
262 |
-
break
|
263 |
-
elif stopping_criteria == 'none':
|
264 |
-
pass
|
265 |
-
|
266 |
-
imgs = torch.clamp(self.vae.decode(self.z_rearrange(canvas_sequence)).sample, -1, 1)
|
267 |
-
return imgs, canvas_sequence, seq_stops * 8
|
268 |
-
|
269 |
-
def _img_encode(
|
270 |
-
self,
|
271 |
-
img: torch.Tensor,
|
272 |
-
noise: float = 0
|
273 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
274 |
-
"""
|
275 |
-
Encode the input image into a latent representation using the VAE.
|
276 |
-
|
277 |
-
Args:
|
278 |
-
img (torch.Tensor): Input image tensor.
|
279 |
-
noise (float): Standard deviation of noise to add to the latent sequence.
|
280 |
-
|
281 |
-
Returns:
|
282 |
-
Tuple containing:
|
283 |
-
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs.
|
284 |
-
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE.
|
285 |
-
- z (torch.Tensor): Sampled latent vector from the VAE.
|
286 |
-
"""
|
287 |
-
posterior = self.vae.encode(img.float())
|
288 |
-
z = posterior.latent_dist.sample()
|
289 |
-
z_sequence = self.query_rearrange(z)
|
290 |
-
|
291 |
-
noise_sequence = z_sequence
|
292 |
-
if noise > 0:
|
293 |
-
noise_sequence = z_sequence + torch.randn_like(z_sequence) * noise
|
294 |
-
|
295 |
-
decoder_inputs_embeds = self.vae_to_t5(noise_sequence)
|
296 |
-
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=decoder_inputs_embeds.size(0))
|
297 |
-
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
298 |
-
return decoder_inputs_embeds, z_sequence, z
|
299 |
-
|
300 |
-
def compute_padding_token(self) -> None:
|
301 |
-
"""
|
302 |
-
Compute and update the padding token.
|
303 |
-
|
304 |
-
Raises:
|
305 |
-
NotImplementedError: This method must be implemented.
|
306 |
-
"""
|
307 |
-
raise NotImplementedError("compute_padding_token not implemented")
|
308 |
-
|
309 |
-
def compute_padding_token_threshold(self) -> None:
|
310 |
-
"""
|
311 |
-
Compute and update the padding token threshold.
|
312 |
-
|
313 |
-
Raises:
|
314 |
-
NotImplementedError: This method must be implemented.
|
315 |
-
"""
|
316 |
-
raise NotImplementedError("compute_padding_token_threshold not implemented")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_emuru.py
CHANGED
@@ -1,23 +1,47 @@
|
|
1 |
-
# modeling_emuru.py
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
|
5 |
-
from configuration_emuru import EmuruConfig
|
6 |
-
# from .configuration_emuru import EmuruConfig
|
7 |
from diffusers import AutoencoderKL
|
8 |
from einops.layers.torch import Rearrange
|
9 |
-
from einops import
|
|
|
|
|
|
|
10 |
|
11 |
class Emuru(PreTrainedModel):
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
super().__init__(config)
|
16 |
-
|
17 |
-
self.tokenizer = AutoTokenizer.from_pretrained(config.
|
18 |
|
19 |
-
|
20 |
-
t5_config = T5Config.from_pretrained(config.t5_config)
|
21 |
t5_config.vocab_size = len(self.tokenizer)
|
22 |
self.T5 = T5ForConditionalGeneration(t5_config)
|
23 |
self.T5.lm_head = nn.Identity()
|
@@ -30,34 +54,51 @@ class Emuru(PreTrainedModel):
|
|
30 |
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
|
31 |
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
|
32 |
|
33 |
-
|
34 |
-
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
|
35 |
self.set_training(self.vae, False)
|
36 |
|
37 |
-
# Define the rearrange layers
|
38 |
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
|
39 |
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
|
40 |
|
41 |
-
# Define your loss functions
|
42 |
self.mse_criterion = nn.MSELoss()
|
43 |
-
|
44 |
-
# Initialize weights following Hugging Face conventions (if needed)
|
45 |
self.init_weights()
|
46 |
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
49 |
model.train() if training else model.eval()
|
50 |
for param in model.parameters():
|
51 |
param.requires_grad = training
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
|
62 |
|
63 |
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
|
@@ -67,99 +108,182 @@ class Emuru(PreTrainedModel):
|
|
67 |
mse_loss = self.mse_criterion(vae_latent, z_sequence)
|
68 |
return mse_loss, pred_latent, z
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
if input_ids is None:
|
127 |
-
input_ids = self.tokenizer(
|
128 |
input_ids = input_ids.to(self.device)
|
129 |
|
130 |
if z_sequence is None:
|
131 |
-
_, z_sequence, _ = self._img_encode(
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
134 |
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
135 |
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
|
|
|
136 |
|
137 |
-
for
|
138 |
if len(z_sequence) == 0:
|
139 |
decoder_inputs_embeds = sos
|
140 |
else:
|
141 |
-
decoder_inputs_embeds = self.vae_to_t5(
|
142 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
143 |
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
144 |
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
if stopping_criteria == 'latent':
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
break
|
154 |
-
elif stopping_criteria == '
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
return img, z_sequence
|
160 |
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
posterior = self.vae.encode(img.float())
|
164 |
z = posterior.latent_dist.sample()
|
165 |
z_sequence = self.query_rearrange(z)
|
@@ -173,10 +297,20 @@ class Emuru(PreTrainedModel):
|
|
173 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
174 |
return decoder_inputs_embeds, z_sequence, z
|
175 |
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
178 |
raise NotImplementedError("compute_padding_token not implemented")
|
179 |
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
|
4 |
+
from .configuration_emuru import EmuruConfig
|
|
|
5 |
from diffusers import AutoencoderKL
|
6 |
from einops.layers.torch import Rearrange
|
7 |
+
from einops import repeat
|
8 |
+
from torchvision.transforms import functional as F
|
9 |
+
from typing import Optional, Tuple, List, Any
|
10 |
+
from PIL import Image
|
11 |
|
12 |
class Emuru(PreTrainedModel):
|
13 |
+
"""
|
14 |
+
Emuru is a conditional generative model that integrates a T5-based decoder with a VAE
|
15 |
+
for image generation conditioned on text and style images.
|
16 |
+
|
17 |
+
Attributes:
|
18 |
+
config_class (Type): Configuration class for the model.
|
19 |
+
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration.
|
20 |
+
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation.
|
21 |
+
sos (nn.Embedding): Start-of-sequence embedding.
|
22 |
+
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space.
|
23 |
+
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space.
|
24 |
+
padding_token (nn.Parameter): Non-trainable parameter for padding tokens.
|
25 |
+
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold.
|
26 |
+
vae (AutoencoderKL): Pre-trained Variational Autoencoder.
|
27 |
+
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries.
|
28 |
+
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions.
|
29 |
+
mse_criterion (nn.MSELoss): Mean squared error loss function.
|
30 |
+
"""
|
31 |
+
config_class = EmuruConfig
|
32 |
+
|
33 |
+
def __init__(self, config: EmuruConfig) -> None:
|
34 |
+
"""
|
35 |
+
Initialize the Emuru model.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
config (EmuruConfig): Configuration object containing model hyperparameters and paths.
|
39 |
+
"""
|
40 |
super().__init__(config)
|
41 |
+
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path)
|
43 |
|
44 |
+
t5_config = T5Config.from_pretrained(config.t5_name_or_path)
|
|
|
45 |
t5_config.vocab_size = len(self.tokenizer)
|
46 |
self.T5 = T5ForConditionalGeneration(t5_config)
|
47 |
self.T5.lm_head = nn.Identity()
|
|
|
54 |
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
|
55 |
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
|
56 |
|
57 |
+
self.vae = AutoencoderKL.from_pretrained(config.vae_name_or_path)
|
|
|
58 |
self.set_training(self.vae, False)
|
59 |
|
|
|
60 |
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
|
61 |
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
|
62 |
|
|
|
63 |
self.mse_criterion = nn.MSELoss()
|
|
|
|
|
64 |
self.init_weights()
|
65 |
|
66 |
+
def set_training(self, model: nn.Module, training: bool) -> None:
|
67 |
+
"""
|
68 |
+
Set the training mode for a given model and freeze/unfreeze parameters accordingly.
|
69 |
|
70 |
+
Args:
|
71 |
+
model (nn.Module): The model to set the training mode for.
|
72 |
+
training (bool): If True, set the model to training mode; otherwise, evaluation mode.
|
73 |
+
"""
|
74 |
model.train() if training else model.eval()
|
75 |
for param in model.parameters():
|
76 |
param.requires_grad = training
|
77 |
|
78 |
+
def forward(
|
79 |
+
self,
|
80 |
+
img: Optional[torch.Tensor] = None,
|
81 |
+
input_ids: Optional[torch.Tensor] = None,
|
82 |
+
attention_mask: Optional[torch.Tensor] = None,
|
83 |
+
noise: float = 0,
|
84 |
+
**kwargs: Any
|
85 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
86 |
+
"""
|
87 |
+
Forward pass of the model.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
img (Optional[torch.Tensor]): Input image tensor.
|
91 |
+
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
92 |
+
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs.
|
93 |
+
noise (float): Amount of noise to add in image encoding.
|
94 |
+
**kwargs: Additional arguments.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
Tuple containing:
|
98 |
+
- mse_loss (torch.Tensor): Mean squared error loss.
|
99 |
+
- pred_latent (torch.Tensor): Predicted latent representations.
|
100 |
+
- z (torch.Tensor): Sampled latent vector from VAE.
|
101 |
+
"""
|
102 |
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
|
103 |
|
104 |
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
|
|
|
108 |
mse_loss = self.mse_criterion(vae_latent, z_sequence)
|
109 |
return mse_loss, pred_latent, z
|
110 |
|
111 |
+
def generate(
|
112 |
+
self,
|
113 |
+
style_text: str,
|
114 |
+
gen_text: str,
|
115 |
+
style_img: torch.Tensor,
|
116 |
+
**kwargs: Any
|
117 |
+
) -> Image.Image:
|
118 |
+
"""
|
119 |
+
Generate an image by combining style and generation texts with a style image.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
style_text (str): Style-related text prompt.
|
123 |
+
gen_text (str): Generation-related text prompt.
|
124 |
+
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D.
|
125 |
+
**kwargs: Additional keyword arguments.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
Image.Image: Generated image as a PIL image.
|
129 |
+
"""
|
130 |
+
if style_img.ndim == 3:
|
131 |
+
style_img = style_img.unsqueeze(0)
|
132 |
+
elif style_img.ndim == 4:
|
133 |
+
pass
|
134 |
+
else:
|
135 |
+
raise ValueError('style_img must be 3D or 4D')
|
136 |
|
137 |
+
texts = [style_text + ' ' + gen_text]
|
138 |
+
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs)
|
139 |
+
imgs = (imgs + 1) / 2
|
140 |
+
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu())
|
141 |
+
|
142 |
+
def generate_batch(
|
143 |
+
self,
|
144 |
+
style_texts: List[str],
|
145 |
+
gen_texts: List[str],
|
146 |
+
style_imgs: torch.Tensor,
|
147 |
+
lengths: List[int],
|
148 |
+
**kwargs: Any
|
149 |
+
) -> List[Image.Image]:
|
150 |
+
"""
|
151 |
+
Generate a batch of images from lists of style texts, generation texts, and style images.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
style_texts (List[str]): List of style-related text prompts.
|
155 |
+
gen_texts (List[str]): List of generation-related text prompts.
|
156 |
+
style_imgs (torch.Tensor): Batch of style images (4D tensor).
|
157 |
+
lengths (List[int]): List of lengths corresponding to each image.
|
158 |
+
**kwargs: Additional keyword arguments.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
List[Image.Image]: List of generated images as PIL images.
|
162 |
+
"""
|
163 |
+
assert style_imgs.ndim == 4, 'style_imgs must be 4D'
|
164 |
+
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length'
|
165 |
+
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length'
|
166 |
+
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)]
|
167 |
+
|
168 |
+
imgs, _, img_ends = self._generate(texts=texts, imgs=style_imgs, lengths=lengths, **kwargs)
|
169 |
+
imgs = (imgs + 1) / 2
|
170 |
+
|
171 |
+
out_imgs = []
|
172 |
+
for i, end in enumerate(img_ends):
|
173 |
+
start = lengths[i]
|
174 |
+
out_imgs.append(F.to_pil_image(imgs[i, ..., start:end].detach().cpu()))
|
175 |
+
return out_imgs
|
176 |
+
|
177 |
+
def _generate(
|
178 |
+
self,
|
179 |
+
texts: Optional[List[str]] = None,
|
180 |
+
imgs: Optional[torch.Tensor] = None,
|
181 |
+
lengths: Optional[List[int]] = None,
|
182 |
+
input_ids: Optional[torch.Tensor] = None,
|
183 |
+
z_sequence: Optional[torch.Tensor] = None,
|
184 |
+
max_new_tokens: int = 256,
|
185 |
+
stopping_criteria: str = 'latent',
|
186 |
+
stopping_after: int = 10,
|
187 |
+
stopping_patience: int = 1
|
188 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
189 |
+
"""
|
190 |
+
Internal generation routine that combines textual and visual inputs to iteratively generate
|
191 |
+
latent representations and decode them into images.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
texts (Optional[List[str]]): List of text prompts.
|
195 |
+
imgs (Optional[torch.Tensor]): Input image tensor.
|
196 |
+
lengths (Optional[List[int]]): Desired lengths for each image in latent space.
|
197 |
+
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
|
198 |
+
z_sequence (Optional[torch.Tensor]): Precomputed latent sequence.
|
199 |
+
max_new_tokens (int): Maximum tokens to generate.
|
200 |
+
stopping_criteria (str): Criteria for stopping ('latent' or 'none').
|
201 |
+
stopping_after (int): Number of tokens to check for stopping condition.
|
202 |
+
stopping_patience (int): Patience parameter for stopping condition.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
Tuple containing:
|
206 |
+
- imgs (torch.Tensor): Generated images.
|
207 |
+
- canvas_sequence (torch.Tensor): Generated latent canvas sequence.
|
208 |
+
- img_ends (torch.Tensor): End indices for each generated image.
|
209 |
+
"""
|
210 |
+
assert texts is not None or input_ids is not None, 'Either texts or input_ids must be provided'
|
211 |
+
assert imgs is not None or z_sequence is not None, 'Either imgs or z_sequence must be provided'
|
212 |
|
213 |
if input_ids is None:
|
214 |
+
input_ids = self.tokenizer(texts, return_tensors='pt', padding=True).input_ids
|
215 |
input_ids = input_ids.to(self.device)
|
216 |
|
217 |
if z_sequence is None:
|
218 |
+
_, z_sequence, _ = self._img_encode(imgs)
|
219 |
+
|
220 |
+
if lengths is None:
|
221 |
+
lengths = [imgs.size(-1)] * imgs.size(0)
|
222 |
+
lengths = torch.tensor(lengths).to(self.device)
|
223 |
+
lengths = (lengths / 8).ceil().int()
|
224 |
+
|
225 |
+
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens))
|
226 |
+
z_sequence_mask = z_sequence_mask.bool().to(self.device)
|
227 |
+
for i, l in enumerate(lengths):
|
228 |
+
z_sequence_mask[i, :l] = True
|
229 |
|
230 |
+
canvas_sequence = z_sequence[:, :lengths.min()]
|
231 |
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
|
232 |
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
|
233 |
+
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1
|
234 |
|
235 |
+
for token_idx in range(lengths.min(), lengths.max() + max_new_tokens):
|
236 |
if len(z_sequence) == 0:
|
237 |
decoder_inputs_embeds = sos
|
238 |
else:
|
239 |
+
decoder_inputs_embeds = self.vae_to_t5(canvas_sequence)
|
240 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
241 |
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
|
242 |
vae_latent = self.t5_to_vae(output.logits[:, -1:])
|
243 |
+
|
244 |
+
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1)
|
245 |
+
if token_idx < z_sequence.size(1):
|
246 |
+
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0])
|
247 |
+
else:
|
248 |
+
seq_slice = vae_latent[:, 0]
|
249 |
+
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1)
|
250 |
|
251 |
if stopping_criteria == 'latent':
|
252 |
+
similarity = torch.nn.functional.cosine_similarity(canvas_sequence, pad_token, dim=-1)
|
253 |
+
windows = (similarity > self.padding_token_threshold).unfold(1, stopping_after, 1)
|
254 |
+
window_sums = windows.to(torch.int).sum(dim=2)
|
255 |
+
|
256 |
+
for i in range(similarity.size(0)):
|
257 |
+
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0]
|
258 |
+
if idx.numel() > 0:
|
259 |
+
seq_stops[i] = idx[0].item()
|
260 |
+
|
261 |
+
if torch.all(seq_stops >= 0):
|
262 |
break
|
263 |
+
elif stopping_criteria == 'none':
|
264 |
+
pass
|
265 |
|
266 |
+
imgs = torch.clamp(self.vae.decode(self.z_rearrange(canvas_sequence)).sample, -1, 1)
|
267 |
+
return imgs, canvas_sequence, seq_stops * 8
|
|
|
268 |
|
269 |
+
def _img_encode(
|
270 |
+
self,
|
271 |
+
img: torch.Tensor,
|
272 |
+
noise: float = 0
|
273 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
274 |
+
"""
|
275 |
+
Encode the input image into a latent representation using the VAE.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
img (torch.Tensor): Input image tensor.
|
279 |
+
noise (float): Standard deviation of noise to add to the latent sequence.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
Tuple containing:
|
283 |
+
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs.
|
284 |
+
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE.
|
285 |
+
- z (torch.Tensor): Sampled latent vector from the VAE.
|
286 |
+
"""
|
287 |
posterior = self.vae.encode(img.float())
|
288 |
z = posterior.latent_dist.sample()
|
289 |
z_sequence = self.query_rearrange(z)
|
|
|
297 |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
|
298 |
return decoder_inputs_embeds, z_sequence, z
|
299 |
|
300 |
+
def compute_padding_token(self) -> None:
|
301 |
+
"""
|
302 |
+
Compute and update the padding token.
|
303 |
|
304 |
+
Raises:
|
305 |
+
NotImplementedError: This method must be implemented.
|
306 |
+
"""
|
307 |
raise NotImplementedError("compute_padding_token not implemented")
|
308 |
|
309 |
+
def compute_padding_token_threshold(self) -> None:
|
310 |
+
"""
|
311 |
+
Compute and update the padding token threshold.
|
312 |
|
313 |
+
Raises:
|
314 |
+
NotImplementedError: This method must be implemented.
|
315 |
+
"""
|
316 |
+
raise NotImplementedError("compute_padding_token_threshold not implemented")
|