|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- bayartsogt/mongolian_speech_commands |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: wav2vec2-base-mn-pretrain-42h-finetuned-speech-commands |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-mn-pretrain-42h-finetuned-speech-commands |
|
|
|
This model is a fine-tuned version of [bayartsogt/wav2vec2-base-mn-pretrain-42h](https://huggingface.co/bayartsogt/wav2vec2-base-mn-pretrain-42h) on the Mongolian Speech Commands dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1007 |
|
- Accuracy: 0.9762 |
|
- F1: 0.9758 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 2.2273 | 1.0 | 17 | 2.2714 | 0.1190 | 0.0253 | |
|
| 1.7478 | 2.0 | 34 | 1.2036 | 0.8452 | 0.8242 | |
|
| 0.775 | 3.0 | 51 | 0.4755 | 0.9524 | 0.9526 | |
|
| 0.4738 | 4.0 | 68 | 0.2056 | 0.9881 | 0.9878 | |
|
| 0.3146 | 5.0 | 85 | 0.1485 | 0.9762 | 0.9765 | |
|
| 0.2677 | 6.0 | 102 | 0.1277 | 0.9762 | 0.9758 | |
|
| 0.2636 | 7.0 | 119 | 0.0919 | 0.9881 | 0.9880 | |
|
| 0.2122 | 8.0 | 136 | 0.0903 | 0.9762 | 0.9758 | |
|
| 0.1817 | 9.0 | 153 | 0.0782 | 0.9881 | 0.9880 | |
|
| 0.198 | 10.0 | 170 | 0.0982 | 0.9762 | 0.9758 | |
|
| 0.1436 | 11.0 | 187 | 0.1053 | 0.9762 | 0.9758 | |
|
| 0.1111 | 12.0 | 204 | 0.1004 | 0.9762 | 0.9758 | |
|
| 0.1607 | 13.0 | 221 | 0.1176 | 0.9762 | 0.9758 | |
|
| 0.1209 | 14.0 | 238 | 0.1097 | 0.9762 | 0.9758 | |
|
| 0.0974 | 15.0 | 255 | 0.1136 | 0.9762 | 0.9758 | |
|
| 0.1351 | 16.0 | 272 | 0.0986 | 0.9762 | 0.9758 | |
|
| 0.1008 | 17.0 | 289 | 0.1010 | 0.9762 | 0.9758 | |
|
| 0.097 | 18.0 | 306 | 0.0781 | 0.9762 | 0.9758 | |
|
| 0.0806 | 19.0 | 323 | 0.1106 | 0.9762 | 0.9758 | |
|
| 0.0744 | 20.0 | 340 | 0.1007 | 0.9762 | 0.9758 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|