maya_LoRA / README.md
basakozsoy's picture
Update README.md
496a7dd verified
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- dora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of TOK cat
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - basakozsoy/maya_LoRA
<Gallery />
## Model description
These are basakozsoy/maya_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of TOK cat to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](basakozsoy/maya_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
repo_id = 'basakozsoy/maya_LoRA'
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.load_lora_weights(repo_id)
_ = pipe.to("cuda")
pipe.load_lora_weights(repo_id)
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]