English
sft
StableLM

Exllama v2 Quantizations of Nous-Capybara-7B-V1.9

Using turboderp's ExLlamaV2 v0.0.7 for quantization.

Each branches contains an individual bits per weight.

Conversion was done using wikitext.parquet as calibration dataset.

Original model: https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9

4.0 bits per weight

6.0 bits per weight

8.0 bits per weight

Download instructions

With git:

git clone --single-branch --branch 4.0 https://huggingface.co/bartowski/Nous-Capybara-7B-V1.9-exl2

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called Nous-Capybara-7B-V1.9-exl2:

mkdir Nous-Capybara-7B-V1.9-exl2
huggingface-cli download bartowski/Nous-Capybara-7B-V1.9-exl2 --local-dir Nous-Capybara-7B-V1.9-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir Nous-Capybara-7B-V1.9-exl2
huggingface-cli download bartowski/Nous-Capybara-7B-V1.9-exl2 --revision 4.0 --local-dir Nous-Capybara-7B-V1.9-exl2 --local-dir-use-symlinks False
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train bartowski/Nous-Capybara-7B-V1.9-exl2