|
""" |
|
ADOBE CONFIDENTIAL |
|
Copyright 2024 Adobe |
|
All Rights Reserved. |
|
NOTICE: All information contained herein is, and remains |
|
the property of Adobe and its suppliers, if any. The intellectual |
|
and technical concepts contained herein are proprietary to Adobe |
|
and its suppliers and are protected by all applicable intellectual |
|
property laws, including trade secret and copyright laws. |
|
Dissemination of this information or reproduction of this material |
|
is strictly forbidden unless prior written permission is obtained |
|
from Adobe. |
|
""" |
|
|
|
from typing import Callable, List, Optional, Union |
|
import inspect |
|
import einops |
|
import PIL.Image |
|
import numpy as np |
|
import torch as th |
|
import torch.nn as nn |
|
from torchvision import transforms |
|
|
|
from diffusers import ModelMixin |
|
from transformers import AutoModel, AutoConfig, SiglipVisionConfig, Dinov2Config, Dinov2Model |
|
from transformers import SiglipVisionModel |
|
from diffusers import DiffusionPipeline |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
|
|
|
|
|
OUT_SIZE = 768 |
|
IN_SIZE = 2048 |
|
|
|
DINO_SIZE = 224 |
|
DINO_MEAN = [0.485, 0.456, 0.406] |
|
DINO_STD = [0.229, 0.224, 0.225] |
|
|
|
SIGLIP_SIZE = 256 |
|
SIGLIP_MEAN = [0.5] |
|
SIGLIP_STD = [0.5] |
|
|
|
|
|
def get_emb(sin_inp): |
|
""" |
|
Gets a base embedding for one dimension with sin and cos intertwined |
|
""" |
|
emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1) |
|
return th.flatten(emb, -2, -1) |
|
|
|
|
|
class PositionalEncoding1D(nn.Module): |
|
def __init__(self, channels): |
|
""" |
|
:param channels: The last dimension of the tensor you want to apply pos emb to. |
|
""" |
|
super(PositionalEncoding1D, self).__init__() |
|
self.org_channels = channels |
|
channels = int(np.ceil(channels / 2) * 2) |
|
self.channels = channels |
|
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.register_buffer("cached_penc", None, persistent=False) |
|
|
|
def forward(self, tensor): |
|
""" |
|
:param tensor: A 3d tensor of size (batch_size, x, ch) |
|
:return: Positional Encoding Matrix of size (batch_size, x, ch) |
|
""" |
|
if len(tensor.shape) != 3: |
|
raise RuntimeError("The input tensor has to be 3d!") |
|
|
|
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: |
|
return self.cached_penc |
|
|
|
self.cached_penc = None |
|
batch_size, x, orig_ch = tensor.shape |
|
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype) |
|
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq) |
|
emb_x = get_emb(sin_inp_x) |
|
emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype) |
|
emb[:, : self.channels] = emb_x |
|
|
|
self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1) |
|
return self.cached_penc |
|
|
|
|
|
|
|
class PositionalEncoding3D(nn.Module): |
|
def __init__(self, channels): |
|
""" |
|
:param channels: The last dimension of the tensor you want to apply pos emb to. |
|
""" |
|
super(PositionalEncoding3D, self).__init__() |
|
self.org_channels = channels |
|
channels = int(np.ceil(channels / 6) * 2) |
|
if channels % 2: |
|
channels += 1 |
|
self.channels = channels |
|
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
self.register_buffer("cached_penc", None, persistent=False) |
|
|
|
def forward(self, tensor): |
|
""" |
|
:param tensor: A 5d tensor of size (batch_size, x, y, z, ch) |
|
:return: Positional Encoding Matrix of size (batch_size, x, y, z, ch) |
|
""" |
|
if len(tensor.shape) != 5: |
|
raise RuntimeError("The input tensor has to be 5d!") |
|
|
|
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape: |
|
return self.cached_penc |
|
|
|
self.cached_penc = None |
|
batch_size, x, y, z, orig_ch = tensor.shape |
|
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype) |
|
pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype) |
|
pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype) |
|
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq) |
|
sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq) |
|
sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq) |
|
emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1) |
|
emb_y = get_emb(sin_inp_y).unsqueeze(1) |
|
emb_z = get_emb(sin_inp_z) |
|
emb = th.zeros( |
|
(x, y, z, self.channels * 3), |
|
device=tensor.device, |
|
dtype=tensor.dtype, |
|
) |
|
emb[:, :, :, : self.channels] = emb_x |
|
emb[:, :, :, self.channels : 2 * self.channels] = emb_y |
|
emb[:, :, :, 2 * self.channels :] = emb_z |
|
|
|
self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1) |
|
return self.cached_penc |
|
|
|
class AnalogyInputProcessor(ModelMixin, ConfigMixin): |
|
|
|
@register_to_config |
|
def __init__(self,): |
|
super(AnalogyInputProcessor, self).__init__() |
|
|
|
self.dino_transform = transforms.Compose( |
|
[ |
|
transforms.Resize((DINO_SIZE, DINO_SIZE)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(DINO_MEAN, DINO_STD), |
|
] |
|
) |
|
|
|
self.siglip_transform = transforms.Compose( |
|
[ |
|
transforms.Resize((SIGLIP_SIZE, SIGLIP_SIZE)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(SIGLIP_MEAN, SIGLIP_STD), |
|
] |
|
) |
|
|
|
dino_mean = th.tensor(DINO_MEAN).view(1, 3, 1, 1) |
|
dino_std = th.tensor(DINO_STD).view(1, 3, 1, 1) |
|
siglip_mean = [SIGLIP_MEAN[0],] * 3 |
|
siglip_std = [SIGLIP_STD[0],] * 3 |
|
siglip_mean = th.tensor(siglip_mean).view(1, 3, 1, 1) |
|
siglip_std = th.tensor(siglip_std).view(1, 3, 1, 1) |
|
self.register_buffer("dino_mean", dino_mean) |
|
self.register_buffer("dino_std", dino_std) |
|
self.register_buffer("siglip_mean", siglip_mean) |
|
self.register_buffer("siglip_std", siglip_std) |
|
|
|
def __call__(self, analogy_prompt): |
|
|
|
img_a_dino = [] |
|
img_a_siglip = [] |
|
img_a_star_dino = [] |
|
img_a_star_siglip = [] |
|
img_b_dino = [] |
|
img_b_siglip = [] |
|
|
|
for im_set in analogy_prompt: |
|
img_a, img_a_star, img_b = im_set |
|
img_a_dino.append(self.dino_transform(img_a)) |
|
img_a_siglip.append(self.siglip_transform(img_a)) |
|
img_a_star_dino.append(self.dino_transform(img_a_star)) |
|
img_a_star_siglip.append(self.siglip_transform(img_a_star)) |
|
img_b_dino.append(self.dino_transform(img_b)) |
|
img_b_siglip.append(self.siglip_transform(img_b)) |
|
|
|
img_a_dino = th.stack(img_a_dino, 0) |
|
img_a_siglip = th.stack(img_a_siglip, 0) |
|
img_a_star_dino = th.stack(img_a_star_dino, 0) |
|
img_a_star_siglip = th.stack(img_a_star_siglip, 0) |
|
img_b_dino = th.stack(img_b_dino, 0) |
|
img_b_siglip = th.stack(img_b_siglip, 0) |
|
|
|
dino_combined_input = th.stack([img_b_dino, img_a_dino, img_a_star_dino], 0) |
|
siglip_combined_input = th.stack([img_b_siglip, img_a_siglip, img_a_star_siglip], 0) |
|
|
|
return dino_combined_input, siglip_combined_input |
|
def get_negative(self, dino_in, siglip_in): |
|
|
|
dino_i = ((dino_in * 0 + 0.5) - self.dino_mean) / self.dino_std |
|
siglip_i = ((siglip_in * 0 + 0.5) - self.siglip_mean) / self.siglip_std |
|
return dino_i, siglip_i |
|
|
|
|
|
class AnalogyProjector(ModelMixin, ConfigMixin): |
|
|
|
@register_to_config |
|
def __init__(self): |
|
super(AnalogyProjector, self).__init__() |
|
self.projector = DinoSiglipMixer() |
|
self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE) |
|
self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE) |
|
|
|
|
|
def forward(self, dino_in, siglip_in, batch_size): |
|
|
|
image_embeddings = self.projector(dino_in, siglip_in) |
|
|
|
image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size) |
|
image_embeddings = self.position_embd(image_embeddings) |
|
return image_embeddings |
|
|
|
def position_embd(self, image_embeddings, concat=False): |
|
canvas_embd = image_embeddings[:, :, 1:, :] |
|
batch_size = canvas_embd.shape[0] |
|
type_size = canvas_embd.shape[1] |
|
xy_size = canvas_embd.shape[2] |
|
|
|
x_size = int(xy_size ** 0.5) |
|
|
|
canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1) |
|
if concat: |
|
canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1) |
|
else: |
|
canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd |
|
canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1) |
|
|
|
class_embd = image_embeddings[:, :, 0, :] |
|
if concat: |
|
class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1) |
|
else: |
|
class_embd = self.pos_embd_1D(class_embd) + class_embd |
|
all_embd_list = [] |
|
for i in range(type_size): |
|
all_embd_list.append(class_embd[:, i:i+1]) |
|
all_embd_list.append(canvas_embd[:, i]) |
|
image_embeddings = th.cat(all_embd_list, 1) |
|
return image_embeddings |
|
|
|
|
|
class HighLowMixer(th.nn.Module): |
|
def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE): |
|
super().__init__() |
|
mid_size = (in_size + out_size) // 2 |
|
|
|
self.lower_projector = th.nn.Sequential( |
|
th.nn.LayerNorm(IN_SIZE//2), |
|
th.nn.SiLU() |
|
) |
|
self.upper_projector = th.nn.Sequential( |
|
th.nn.LayerNorm(IN_SIZE//2), |
|
th.nn.SiLU() |
|
) |
|
self.projectors = th.nn.ModuleList([ |
|
|
|
th.nn.Linear(in_size, mid_size), |
|
th.nn.SiLU(), |
|
th.nn.Linear(mid_size, out_size) |
|
]) |
|
|
|
for proj in self.projectors: |
|
if isinstance(proj, th.nn.Linear): |
|
th.nn.init.xavier_uniform_(proj.weight) |
|
th.nn.init.zeros_(proj.bias) |
|
|
|
def forward(self, lower_in, upper_in, ): |
|
|
|
lower_in = self.lower_projector(lower_in) |
|
upper_in = self.upper_projector(upper_in) |
|
x = th.cat([lower_in, upper_in], -1) |
|
for proj in self.projectors: |
|
x = proj(x) |
|
return x |
|
|
|
class DinoSiglipMixer(th.nn.Module): |
|
def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE): |
|
super().__init__() |
|
self.dino_projector = HighLowMixer() |
|
self.siglip_projector = HighLowMixer() |
|
self.projectors = th.nn.Sequential( |
|
th.nn.SiLU(), |
|
th.nn.Linear(in_size, out_size), |
|
) |
|
|
|
for proj in self.projectors: |
|
if isinstance(proj, th.nn.Linear): |
|
th.nn.init.xavier_uniform_(proj.weight) |
|
th.nn.init.zeros_(proj.bias) |
|
|
|
|
|
def forward(self, dino_in, siglip_in): |
|
|
|
lower, upper = th.chunk(dino_in, 2, -1) |
|
dino_out = self.dino_projector(lower, upper) |
|
lower, upper = th.chunk(siglip_in, 2, -1) |
|
siglip_out = self.siglip_projector(lower, upper) |
|
x = th.cat([dino_out, siglip_out], -1) |
|
for proj in self.projectors: |
|
x = proj(x) |
|
return x |
|
|
|
class AnalogyEncoder(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__(self, load_pretrained=False, |
|
dino_config_dict=None, siglip_config_dict=None): |
|
super().__init__() |
|
if load_pretrained: |
|
image_encoder_dino = AutoModel.from_pretrained('facebook/dinov2-large', torch_dtype=th.float16) |
|
image_encoder_siglip = SiglipVisionModel.from_pretrained("google/siglip-large-patch16-256", torch_dtype=th.float16, attn_implementation="sdpa") |
|
else: |
|
image_encoder_dino = AutoModel.from_config(Dinov2Config.from_dict(dino_config_dict)) |
|
image_encoder_siglip = AutoModel.from_config(SiglipVisionConfig.from_dict(siglip_config_dict)) |
|
|
|
image_encoder_dino.requires_grad_(False) |
|
image_encoder_dino = image_encoder_dino.to(memory_format=th.channels_last) |
|
|
|
image_encoder_siglip.requires_grad_(False) |
|
image_encoder_siglip = image_encoder_siglip.to(memory_format=th.channels_last) |
|
self.image_encoder_dino = image_encoder_dino |
|
self.image_encoder_siglip = image_encoder_siglip |
|
|
|
|
|
def dino_normalization(self, encoder_output): |
|
embeds = encoder_output.last_hidden_state |
|
embeds_pooled = embeds[:, 0:1] |
|
embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True) |
|
return embeds |
|
|
|
def siglip_normalization(self, encoder_output): |
|
embeds = th.cat ([encoder_output.pooler_output[:, None, :], encoder_output.last_hidden_state], dim=1) |
|
embeds_pooled = embeds[:, 0:1] |
|
embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True) |
|
return embeds |
|
|
|
def forward(self, dino_in, siglip_in): |
|
|
|
x_1 = self.image_encoder_dino(dino_in, output_hidden_states=True) |
|
x_1_first = x_1.hidden_states[0] |
|
x_1 = self.dino_normalization(x_1) |
|
x_2 = self.image_encoder_siglip(siglip_in, output_hidden_states=True) |
|
x_2_first = x_2.hidden_states[0] |
|
x_2_first_pool = th.mean(x_2_first, dim=1, keepdim=True) |
|
x_2_first = th.cat([x_2_first_pool, x_2_first], 1) |
|
x_2 = self.siglip_normalization(x_2) |
|
dino_embd = th.cat([x_1, x_1_first], -1) |
|
siglip_embd = th.cat([x_2, x_2_first], -1) |
|
return dino_embd, siglip_embd |
|
|
|
|
|
class PatternAnalogyTrifuser(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
""" |
|
|
|
model_cpu_offload_seq = "bert->unet->vqvae" |
|
|
|
analogy_input_processor: AnalogyInputProcessor |
|
analogy_encoder: AnalogyEncoder |
|
analogy_projector: AnalogyProjector |
|
unet: UNet2DConditionModel |
|
vae: AutoencoderKL |
|
scheduler: KarrasDiffusionSchedulers |
|
|
|
def __init__(self, |
|
analogy_input_processor: AnalogyInputProcessor, |
|
analogy_projector: AnalogyProjector, |
|
analogy_encoder: AnalogyEncoder, |
|
unet: UNet2DConditionModel, |
|
vae: AutoencoderKL, |
|
scheduler: KarrasDiffusionSchedulers,): |
|
|
|
|
|
super().__init__() |
|
self.register_modules( |
|
analogy_input_processor=analogy_input_processor, |
|
analogy_encoder=analogy_encoder, |
|
analogy_projector=analogy_projector, |
|
unet=unet, |
|
vae=vae, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
|
|
def check_inputs(self, analogy_prompt, negative_analogy_prompt, height, width, callback_steps): |
|
if ( |
|
not isinstance(analogy_prompt, th.Tensor) |
|
and not isinstance(analogy_prompt, PIL.Image.Image) |
|
and not isinstance(analogy_prompt, list) |
|
): |
|
raise ValueError( |
|
"`analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(analogy_prompt)}" |
|
) |
|
if not negative_analogy_prompt is None: |
|
if ( |
|
not isinstance(negative_analogy_prompt, th.Tensor) |
|
and not isinstance(negative_analogy_prompt, PIL.Image.Image) |
|
and not isinstance(negative_analogy_prompt, list) |
|
): |
|
raise ValueError( |
|
"`negative_analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(negative_analogy_prompt)}" |
|
) |
|
|
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _encode_prompt(self, analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
weight_dtype = self.unet.dtype |
|
dino_input, siglip_input = self.analogy_input_processor(analogy_prompt) |
|
dino_input = dino_input.to(device=device).to(dtype=weight_dtype) |
|
siglip_input = siglip_input.to(device=device).to(dtype=weight_dtype) |
|
batch_size = dino_input.shape[1] |
|
dino_input_reshaped = einops.rearrange(dino_input, "k b c h w -> (k b) c h w") |
|
siglip_input_reshaped = einops.rearrange(siglip_input, "k b c h w -> (k b) c h w") |
|
dino_enc, siglip_enc = self.analogy_encoder(dino_input_reshaped, siglip_input_reshaped) |
|
image_embeddings = self.analogy_projector(dino_enc, siglip_enc, batch_size) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_images: List[str] |
|
if negative_prompt is None: |
|
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size |
|
elif type(negative_prompt) is not type(analogy_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(analogy_prompt)} !=" |
|
f" {type(negative_prompt)}." |
|
) |
|
elif isinstance(negative_prompt, PIL.Image.Image): |
|
uncond_images = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {analogy_prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_images = negative_prompt |
|
dino_neg, siglip_neg = self.analogy_input_processor.get_negative(dino_input, siglip_input) |
|
|
|
dino_neg = dino_neg.to(device=device).to(dtype=weight_dtype) |
|
siglip_neg = siglip_neg.to(device=device).to(dtype=weight_dtype) |
|
dino_neg_reshaped = einops.rearrange(dino_neg, "k b c h w -> (k b) c h w") |
|
siglip_neg_reshaped = einops.rearrange(siglip_neg, "k b c h w -> (k b) c h w") |
|
dino_neg_enc, siglip_neg_enc = self.analogy_encoder(dino_neg_reshaped, siglip_neg_reshaped) |
|
negative_prompt_embeds = self.analogy_projector(dino_neg_enc, siglip_neg_enc, batch_size) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1) |
|
image_embeddings = th.cat([negative_prompt_embeds, image_embeddings]) |
|
|
|
|
|
return image_embeddings |
|
|
|
@th.no_grad() |
|
def __call__( |
|
self, |
|
analogy_prompt: Union[str, List[str]] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
negative_analogy_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[th.Generator, List[th.Generator]]] = None, |
|
latents: Optional[th.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, th.Tensor], None]] = None, |
|
callback_steps: int = 1, |
|
start_step: int = 0, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): |
|
The image prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import VersatileDiffusionImageVariationPipeline |
|
>>> import torch |
|
>>> import requests |
|
>>> from io import BytesIO |
|
>>> from PIL import Image |
|
|
|
>>> # let's download an initial image |
|
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" |
|
|
|
>>> response = requests.get(url) |
|
>>> image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
>>> pipe = VersatileDiffusionImageVariationPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(0) |
|
>>> image = pipe(image, generator=generator).images[0] |
|
>>> image.save("./car_variation.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images. |
|
""" |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(analogy_prompt, negative_analogy_prompt, height, width, callback_steps) |
|
|
|
|
|
if isinstance(analogy_prompt, list): |
|
batch_size = len(analogy_prompt) |
|
elif isinstance(analogy_prompt, tuple): |
|
batch_size = 1 |
|
else: |
|
raise ValueError( |
|
f"`analogy_prompt` has to be a list of images or a tuple of images but is of type {type(analogy_prompt)}" |
|
) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
analogy_embeddings = self._encode_prompt( |
|
analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_analogy_prompt |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
timesteps = timesteps[start_step:] |
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
analogy_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = th.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=analogy_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |