bardofcodes commited on
Commit
f79f204
·
verified ·
1 Parent(s): 4135af8

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +331 -3
pipeline.py CHANGED
@@ -33,9 +33,337 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineO
33
 
34
  from diffusers.configuration_utils import ConfigMixin, register_to_config
35
  # REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
36
- from analogy_encoder import AnalogyEncoder
37
- from analogy_projector import AnalogyProjector
38
- from analogy_input_processor import AnalogyInputProcessor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  class PatternAnalogyTrifuser(DiffusionPipeline):
41
  r"""
 
33
 
34
  from diffusers.configuration_utils import ConfigMixin, register_to_config
35
  # REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
36
+
37
+
38
+ OUT_SIZE = 768
39
+ IN_SIZE = 2048
40
+
41
+ DINO_SIZE = 224
42
+ DINO_MEAN = [0.485, 0.456, 0.406]
43
+ DINO_STD = [0.229, 0.224, 0.225]
44
+
45
+ SIGLIP_SIZE = 256
46
+ SIGLIP_MEAN = [0.5]
47
+ SIGLIP_STD = [0.5]
48
+
49
+
50
+ def get_emb(sin_inp):
51
+ """
52
+ Gets a base embedding for one dimension with sin and cos intertwined
53
+ """
54
+ emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
55
+ return th.flatten(emb, -2, -1)
56
+
57
+
58
+ class PositionalEncoding1D(nn.Module):
59
+ def __init__(self, channels):
60
+ """
61
+ :param channels: The last dimension of the tensor you want to apply pos emb to.
62
+ """
63
+ super(PositionalEncoding1D, self).__init__()
64
+ self.org_channels = channels
65
+ channels = int(np.ceil(channels / 2) * 2)
66
+ self.channels = channels
67
+ inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
68
+ self.register_buffer("inv_freq", inv_freq)
69
+ self.register_buffer("cached_penc", None, persistent=False)
70
+
71
+ def forward(self, tensor):
72
+ """
73
+ :param tensor: A 3d tensor of size (batch_size, x, ch)
74
+ :return: Positional Encoding Matrix of size (batch_size, x, ch)
75
+ """
76
+ if len(tensor.shape) != 3:
77
+ raise RuntimeError("The input tensor has to be 3d!")
78
+
79
+ if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
80
+ return self.cached_penc
81
+
82
+ self.cached_penc = None
83
+ batch_size, x, orig_ch = tensor.shape
84
+ pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
85
+ sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
86
+ emb_x = get_emb(sin_inp_x)
87
+ emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
88
+ emb[:, : self.channels] = emb_x
89
+
90
+ self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
91
+ return self.cached_penc
92
+
93
+
94
+
95
+ class PositionalEncoding3D(nn.Module):
96
+ def __init__(self, channels):
97
+ """
98
+ :param channels: The last dimension of the tensor you want to apply pos emb to.
99
+ """
100
+ super(PositionalEncoding3D, self).__init__()
101
+ self.org_channels = channels
102
+ channels = int(np.ceil(channels / 6) * 2)
103
+ if channels % 2:
104
+ channels += 1
105
+ self.channels = channels
106
+ inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
107
+ self.register_buffer("inv_freq", inv_freq)
108
+ self.register_buffer("cached_penc", None, persistent=False)
109
+
110
+ def forward(self, tensor):
111
+ """
112
+ :param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
113
+ :return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
114
+ """
115
+ if len(tensor.shape) != 5:
116
+ raise RuntimeError("The input tensor has to be 5d!")
117
+
118
+ if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
119
+ return self.cached_penc
120
+
121
+ self.cached_penc = None
122
+ batch_size, x, y, z, orig_ch = tensor.shape
123
+ pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
124
+ pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
125
+ pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype)
126
+ sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
127
+ sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq)
128
+ sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq)
129
+ emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
130
+ emb_y = get_emb(sin_inp_y).unsqueeze(1)
131
+ emb_z = get_emb(sin_inp_z)
132
+ emb = th.zeros(
133
+ (x, y, z, self.channels * 3),
134
+ device=tensor.device,
135
+ dtype=tensor.dtype,
136
+ )
137
+ emb[:, :, :, : self.channels] = emb_x
138
+ emb[:, :, :, self.channels : 2 * self.channels] = emb_y
139
+ emb[:, :, :, 2 * self.channels :] = emb_z
140
+
141
+ self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
142
+ return self.cached_penc
143
+
144
+ class AnalogyInputProcessor(ModelMixin, ConfigMixin):
145
+
146
+ @register_to_config
147
+ def __init__(self,):
148
+ super(AnalogyInputProcessor, self).__init__()
149
+
150
+ self.dino_transform = transforms.Compose(
151
+ [
152
+ transforms.Resize((DINO_SIZE, DINO_SIZE)),
153
+ transforms.ToTensor(),
154
+ transforms.Normalize(DINO_MEAN, DINO_STD), # SIGLIP normalization
155
+ ]
156
+ )
157
+
158
+ self.siglip_transform = transforms.Compose(
159
+ [
160
+ transforms.Resize((SIGLIP_SIZE, SIGLIP_SIZE)),
161
+ transforms.ToTensor(),
162
+ transforms.Normalize(SIGLIP_MEAN, SIGLIP_STD), # SIGLIP normalization
163
+ ]
164
+ )
165
+
166
+ dino_mean = th.tensor(DINO_MEAN).view(1, 3, 1, 1)
167
+ dino_std = th.tensor(DINO_STD).view(1, 3, 1, 1)
168
+ siglip_mean = [SIGLIP_MEAN[0],] * 3
169
+ siglip_std = [SIGLIP_STD[0],] * 3
170
+ siglip_mean = th.tensor(siglip_mean).view(1, 3, 1, 1)
171
+ siglip_std = th.tensor(siglip_std).view(1, 3, 1, 1)
172
+ self.register_buffer("dino_mean", dino_mean)
173
+ self.register_buffer("dino_std", dino_std)
174
+ self.register_buffer("siglip_mean", siglip_mean)
175
+ self.register_buffer("siglip_std", siglip_std)
176
+
177
+ def __call__(self, analogy_prompt):
178
+ # List of tuples of (A, A*, B)
179
+ img_a_dino = []
180
+ img_a_siglip = []
181
+ img_a_star_dino = []
182
+ img_a_star_siglip = []
183
+ img_b_dino = []
184
+ img_b_siglip = []
185
+
186
+ for im_set in analogy_prompt:
187
+ img_a, img_a_star, img_b = im_set
188
+ img_a_dino.append(self.dino_transform(img_a))
189
+ img_a_siglip.append(self.siglip_transform(img_a))
190
+ img_a_star_dino.append(self.dino_transform(img_a_star))
191
+ img_a_star_siglip.append(self.siglip_transform(img_a_star))
192
+ img_b_dino.append(self.dino_transform(img_b))
193
+ img_b_siglip.append(self.siglip_transform(img_b))
194
+
195
+ img_a_dino = th.stack(img_a_dino, 0)
196
+ img_a_siglip = th.stack(img_a_siglip, 0)
197
+ img_a_star_dino = th.stack(img_a_star_dino, 0)
198
+ img_a_star_siglip = th.stack(img_a_star_siglip, 0)
199
+ img_b_dino = th.stack(img_b_dino, 0)
200
+ img_b_siglip = th.stack(img_b_siglip, 0)
201
+
202
+ dino_combined_input = th.stack([img_b_dino, img_a_dino, img_a_star_dino], 0)
203
+ siglip_combined_input = th.stack([img_b_siglip, img_a_siglip, img_a_star_siglip], 0)
204
+
205
+ return dino_combined_input, siglip_combined_input
206
+ def get_negative(self, dino_in, siglip_in):
207
+
208
+ dino_i = ((dino_in * 0 + 0.5) - self.dino_mean) / self.dino_std
209
+ siglip_i = ((siglip_in * 0 + 0.5) - self.siglip_mean) / self.siglip_std
210
+ return dino_i, siglip_i
211
+
212
+
213
+ class AnalogyProjector(ModelMixin, ConfigMixin):
214
+
215
+ @register_to_config
216
+ def __init__(self):
217
+ super(AnalogyProjector, self).__init__()
218
+ self.projector = DinoSiglipMixer()
219
+ self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE)
220
+ self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE)
221
+
222
+
223
+ def forward(self, dino_in, siglip_in, batch_size):
224
+
225
+ image_embeddings = self.projector(dino_in, siglip_in)
226
+
227
+ image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size)
228
+ image_embeddings = self.position_embd(image_embeddings)
229
+ return image_embeddings
230
+
231
+ def position_embd(self, image_embeddings, concat=False):
232
+ canvas_embd = image_embeddings[:, :, 1:, :]
233
+ batch_size = canvas_embd.shape[0]
234
+ type_size = canvas_embd.shape[1]
235
+ xy_size = canvas_embd.shape[2]
236
+
237
+ x_size = int(xy_size ** 0.5)
238
+
239
+ canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1)
240
+ if concat:
241
+ canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1)
242
+ else:
243
+ canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd
244
+ canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1)
245
+
246
+ class_embd = image_embeddings[:, :, 0, :]
247
+ if concat:
248
+ class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1)
249
+ else:
250
+ class_embd = self.pos_embd_1D(class_embd) + class_embd
251
+ all_embd_list = []
252
+ for i in range(type_size):
253
+ all_embd_list.append(class_embd[:, i:i+1])
254
+ all_embd_list.append(canvas_embd[:, i])
255
+ image_embeddings = th.cat(all_embd_list, 1)
256
+ return image_embeddings
257
+
258
+
259
+ class HighLowMixer(th.nn.Module):
260
+ def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE):
261
+ super().__init__()
262
+ mid_size = (in_size + out_size) // 2
263
+
264
+ self.lower_projector = th.nn.Sequential(
265
+ th.nn.LayerNorm(IN_SIZE//2),
266
+ th.nn.SiLU()
267
+ )
268
+ self.upper_projector = th.nn.Sequential(
269
+ th.nn.LayerNorm(IN_SIZE//2),
270
+ th.nn.SiLU()
271
+ )
272
+ self.projectors = th.nn.ModuleList([
273
+ # add layer norm
274
+ th.nn.Linear(in_size, mid_size),
275
+ th.nn.SiLU(),
276
+ th.nn.Linear(mid_size, out_size)
277
+ ])
278
+ # initialize
279
+ for proj in self.projectors:
280
+ if isinstance(proj, th.nn.Linear):
281
+ th.nn.init.xavier_uniform_(proj.weight)
282
+ th.nn.init.zeros_(proj.bias)
283
+
284
+ def forward(self, lower_in, upper_in, ):
285
+ # ALso format lower_in
286
+ lower_in = self.lower_projector(lower_in)
287
+ upper_in = self.upper_projector(upper_in)
288
+ x = th.cat([lower_in, upper_in], -1)
289
+ for proj in self.projectors:
290
+ x = proj(x)
291
+ return x
292
+
293
+ class DinoSiglipMixer(th.nn.Module):
294
+ def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE):
295
+ super().__init__()
296
+ self.dino_projector = HighLowMixer()
297
+ self.siglip_projector = HighLowMixer()
298
+ self.projectors = th.nn.Sequential(
299
+ th.nn.SiLU(),
300
+ th.nn.Linear(in_size, out_size),
301
+ )
302
+ # initialize
303
+ for proj in self.projectors:
304
+ if isinstance(proj, th.nn.Linear):
305
+ th.nn.init.xavier_uniform_(proj.weight)
306
+ th.nn.init.zeros_(proj.bias)
307
+
308
+
309
+ def forward(self, dino_in, siglip_in):
310
+ # ALso format lower_in
311
+ lower, upper = th.chunk(dino_in, 2, -1)
312
+ dino_out = self.dino_projector(lower, upper)
313
+ lower, upper = th.chunk(siglip_in, 2, -1)
314
+ siglip_out = self.siglip_projector(lower, upper)
315
+ x = th.cat([dino_out, siglip_out], -1)
316
+ for proj in self.projectors:
317
+ x = proj(x)
318
+ return x
319
+
320
+ class AnalogyEncoder(ModelMixin, ConfigMixin):
321
+ @register_to_config
322
+ def __init__(self, load_pretrained=False,
323
+ dino_config_dict=None, siglip_config_dict=None):
324
+ super().__init__()
325
+ if load_pretrained:
326
+ image_encoder_dino = AutoModel.from_pretrained('facebook/dinov2-large', torch_dtype=th.float16)
327
+ image_encoder_siglip = SiglipVisionModel.from_pretrained("google/siglip-large-patch16-256", torch_dtype=th.float16, attn_implementation="sdpa")
328
+ else:
329
+ image_encoder_dino = AutoModel.from_config(Dinov2Config.from_dict(dino_config_dict))
330
+ image_encoder_siglip = AutoModel.from_config(SiglipVisionConfig.from_dict(siglip_config_dict))
331
+
332
+ image_encoder_dino.requires_grad_(False)
333
+ image_encoder_dino = image_encoder_dino.to(memory_format=th.channels_last)
334
+
335
+ image_encoder_siglip.requires_grad_(False)
336
+ image_encoder_siglip = image_encoder_siglip.to(memory_format=th.channels_last)
337
+ self.image_encoder_dino = image_encoder_dino
338
+ self.image_encoder_siglip = image_encoder_siglip
339
+
340
+
341
+ def dino_normalization(self, encoder_output):
342
+ embeds = encoder_output.last_hidden_state
343
+ embeds_pooled = embeds[:, 0:1]
344
+ embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
345
+ return embeds
346
+
347
+ def siglip_normalization(self, encoder_output):
348
+ embeds = th.cat ([encoder_output.pooler_output[:, None, :], encoder_output.last_hidden_state], dim=1)
349
+ embeds_pooled = embeds[:, 0:1]
350
+ embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
351
+ return embeds
352
+
353
+ def forward(self, dino_in, siglip_in):
354
+
355
+ x_1 = self.image_encoder_dino(dino_in, output_hidden_states=True)
356
+ x_1_first = x_1.hidden_states[0]
357
+ x_1 = self.dino_normalization(x_1)
358
+ x_2 = self.image_encoder_siglip(siglip_in, output_hidden_states=True)
359
+ x_2_first = x_2.hidden_states[0]
360
+ x_2_first_pool = th.mean(x_2_first, dim=1, keepdim=True)
361
+ x_2_first = th.cat([x_2_first_pool, x_2_first], 1)
362
+ x_2 = self.siglip_normalization(x_2)
363
+ dino_embd = th.cat([x_1, x_1_first], -1)
364
+ siglip_embd = th.cat([x_2, x_2_first], -1)
365
+ return dino_embd, siglip_embd
366
+
367
 
368
  class PatternAnalogyTrifuser(DiffusionPipeline):
369
  r"""