bagasshw's picture
Model save
b6e4414 verified
|
raw
history blame
2.22 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - jv_id_asr_split
metrics:
  - wer
model-index:
  - name: whisper-tiny-javanese-openslr-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: jv_id_asr_split
          type: jv_id_asr_split
          config: jv_id_asr_source
          split: None
          args: jv_id_asr_source
        metrics:
          - name: Wer
            type: wer
            value: 0.6603038810125197

whisper-tiny-javanese-openslr-v2

This model is a fine-tuned version of openai/whisper-tiny on the jv_id_asr_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3406
  • Wer: 0.6603

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6676 0.8643 500 0.5638 0.4824
0.4792 1.7277 1000 0.4284 0.5330
0.3988 2.5912 1500 0.3772 0.5687
0.3565 3.4546 2000 0.3528 0.6204
0.3386 4.3181 2500 0.3406 0.6603

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu126
  • Datasets 3.3.2
  • Tokenizers 0.21.0