baby-dev's picture
End of training
bfe5fde verified
|
raw
history blame
6.92 kB
metadata
library_name: peft
license: mit
base_model: fxmarty/tiny-random-GemmaForCausalLM
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: f51bfe77-a6eb-4b31-8db3-03587638137c
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-random-GemmaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5357759852985b4d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5357759852985b4d_train_data.json
  type:
    field_input: Complex_CoT
    field_instruction: Question
    field_output: Response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: baby-dev/f51bfe77-a6eb-4b31-8db3-03587638137c
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 23974
micro_batch_size: 4
mlflow_experiment_name: /tmp/5357759852985b4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4825c224-af5c-46aa-8cf7-640b49b5a593
wandb_project: SN56-45
wandb_run: your_name
wandb_runid: 4825c224-af5c-46aa-8cf7-640b49b5a593
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

f51bfe77-a6eb-4b31-8db3-03587638137c

This model is a fine-tuned version of fxmarty/tiny-random-GemmaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 12.3695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 14470

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 12.4576
12.4008 0.1382 200 12.4003
12.395 0.2764 400 12.3943
12.3938 0.4147 600 12.3938
12.3923 0.5529 800 12.3918
12.3906 0.6911 1000 12.3871
12.3865 0.8293 1200 12.3827
12.383 0.9675 1400 12.3802
12.3819 1.1057 1600 12.3794
12.3811 1.2440 1800 12.3783
12.3801 1.3822 2000 12.3778
12.3811 1.5204 2200 12.3772
12.3805 1.6586 2400 12.3774
12.3807 1.7968 2600 12.3770
12.3804 1.9350 2800 12.3774
12.3793 2.0733 3000 12.3764
12.38 2.2115 3200 12.3761
12.3799 2.3497 3400 12.3763
12.3795 2.4879 3600 12.3758
12.3809 2.6261 3800 12.3757
12.3785 2.7643 4000 12.3757
12.3779 2.9026 4200 12.3755
12.379 3.0408 4400 12.3753
12.3781 3.1790 4600 12.3754
12.3778 3.3172 4800 12.3750
12.3765 3.4554 5000 12.3751
12.3777 3.5936 5200 12.3748
12.3765 3.7319 5400 12.3749
12.3778 3.8701 5600 12.3746
12.3788 4.0083 5800 12.3746
12.3768 4.1465 6000 12.3746
12.3774 4.2847 6200 12.3742
12.3774 4.4229 6400 12.3741
12.3766 4.5612 6600 12.3739
12.3775 4.6994 6800 12.3738
12.3769 4.8376 7000 12.3740
12.3769 4.9758 7200 12.3737
12.3774 5.1140 7400 12.3736
12.3754 5.2522 7600 12.3733
12.3759 5.3905 7800 12.3728
12.3742 5.5287 8000 12.3728
12.3764 5.6669 8200 12.3724
12.3766 5.8051 8400 12.3721
12.3761 5.9433 8600 12.3720
12.3746 6.0815 8800 12.3714
12.3749 6.2198 9000 12.3710
12.3739 6.3580 9200 12.3710
12.3743 6.4962 9400 12.3709
12.3748 6.6344 9600 12.3706
12.3723 6.7726 9800 12.3706
12.3738 6.9109 10000 12.3703
12.3724 7.0491 10200 12.3702
12.3723 7.1873 10400 12.3696
12.3728 7.3255 10600 12.3697
12.3736 7.4637 10800 12.3694
12.3728 7.6019 11000 12.3698
12.3735 7.7402 11200 12.3695
12.3732 7.8784 11400 12.3695

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1