Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-random-GemmaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d6f71c1fcd1498e2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d6f71c1fcd1498e2_train_data.json
  type:
    field_input: topics
    field_instruction: content
    field_output: code_prompt
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: auxyus/c90f8a4b-bbb4-4848-8d14-cebbcabefa76
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/d6f71c1fcd1498e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 90bcdc9c-e5a4-4355-ad92-58c883587eb0
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 90bcdc9c-e5a4-4355-ad92-58c883587eb0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c90f8a4b-bbb4-4848-8d14-cebbcabefa76

This model is a fine-tuned version of fxmarty/tiny-random-GemmaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 12.4298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0179 1 12.4331
12.4336 0.1607 9 12.4329
12.4305 0.3214 18 12.4326
12.4312 0.4821 27 12.4322
12.4324 0.6429 36 12.4317
12.4297 0.8036 45 12.4313
12.4287 0.9643 54 12.4307
12.4285 1.125 63 12.4303
12.429 1.2857 72 12.4300
12.4294 1.4464 81 12.4299
12.4301 1.6071 90 12.4298
12.4284 1.7679 99 12.4298

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for auxyus/c90f8a4b-bbb4-4848-8d14-cebbcabefa76

Adapter
(260)
this model