autosyrup commited on
Commit
11a160a
·
1 Parent(s): 45f4452

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # bert
20
+
21
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3752
24
+ - Precision: 0.5495
25
+ - Recall: 0.5949
26
+ - F1: 0.5713
27
+ - Accuracy: 0.9455
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 20
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 151 | 0.1826 | 0.4095 | 0.4084 | 0.4089 | 0.9362 |
59
+ | No log | 2.0 | 302 | 0.1684 | 0.4941 | 0.5303 | 0.5116 | 0.9442 |
60
+ | No log | 3.0 | 453 | 0.2528 | 0.5197 | 0.4477 | 0.4810 | 0.9398 |
61
+ | 0.1001 | 4.0 | 604 | 0.2100 | 0.5182 | 0.5583 | 0.5375 | 0.9439 |
62
+ | 0.1001 | 5.0 | 755 | 0.2556 | 0.5207 | 0.4783 | 0.4986 | 0.9419 |
63
+ | 0.1001 | 6.0 | 906 | 0.2908 | 0.4132 | 0.4204 | 0.4168 | 0.9365 |
64
+ | 0.0205 | 7.0 | 1057 | 0.3046 | 0.5 | 0.6236 | 0.5550 | 0.9435 |
65
+ | 0.0205 | 8.0 | 1208 | 0.3057 | 0.5324 | 0.5750 | 0.5529 | 0.9458 |
66
+ | 0.0205 | 9.0 | 1359 | 0.3122 | 0.5626 | 0.5776 | 0.5700 | 0.9469 |
67
+ | 0.0082 | 10.0 | 1510 | 0.3673 | 0.5733 | 0.5263 | 0.5488 | 0.9441 |
68
+ | 0.0082 | 11.0 | 1661 | 0.3432 | 0.5482 | 0.5270 | 0.5374 | 0.9455 |
69
+ | 0.0082 | 12.0 | 1812 | 0.3305 | 0.5590 | 0.5716 | 0.5652 | 0.9445 |
70
+ | 0.0082 | 13.0 | 1963 | 0.3293 | 0.5434 | 0.6009 | 0.5707 | 0.9431 |
71
+ | 0.005 | 14.0 | 2114 | 0.4080 | 0.5627 | 0.5803 | 0.5713 | 0.9451 |
72
+ | 0.005 | 15.0 | 2265 | 0.3752 | 0.5495 | 0.5949 | 0.5713 | 0.9455 |
73
+ | 0.005 | 16.0 | 2416 | 0.4140 | 0.5823 | 0.5470 | 0.5641 | 0.9455 |
74
+ | 0.002 | 17.0 | 2567 | 0.4308 | 0.5555 | 0.5670 | 0.5612 | 0.9438 |
75
+ | 0.002 | 18.0 | 2718 | 0.4389 | 0.5594 | 0.5676 | 0.5635 | 0.9436 |
76
+ | 0.002 | 19.0 | 2869 | 0.4463 | 0.5609 | 0.5676 | 0.5642 | 0.9444 |
77
+ | 0.0007 | 20.0 | 3020 | 0.4512 | 0.5648 | 0.5636 | 0.5642 | 0.9448 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.31.0
83
+ - Pytorch 2.0.1+cu117
84
+ - Datasets 2.14.2
85
+ - Tokenizers 0.13.3