bert
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3752
- Precision: 0.5495
- Recall: 0.5949
- F1: 0.5713
- Accuracy: 0.9455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 151 | 0.1826 | 0.4095 | 0.4084 | 0.4089 | 0.9362 |
No log | 2.0 | 302 | 0.1684 | 0.4941 | 0.5303 | 0.5116 | 0.9442 |
No log | 3.0 | 453 | 0.2528 | 0.5197 | 0.4477 | 0.4810 | 0.9398 |
0.1001 | 4.0 | 604 | 0.2100 | 0.5182 | 0.5583 | 0.5375 | 0.9439 |
0.1001 | 5.0 | 755 | 0.2556 | 0.5207 | 0.4783 | 0.4986 | 0.9419 |
0.1001 | 6.0 | 906 | 0.2908 | 0.4132 | 0.4204 | 0.4168 | 0.9365 |
0.0205 | 7.0 | 1057 | 0.3046 | 0.5 | 0.6236 | 0.5550 | 0.9435 |
0.0205 | 8.0 | 1208 | 0.3057 | 0.5324 | 0.5750 | 0.5529 | 0.9458 |
0.0205 | 9.0 | 1359 | 0.3122 | 0.5626 | 0.5776 | 0.5700 | 0.9469 |
0.0082 | 10.0 | 1510 | 0.3673 | 0.5733 | 0.5263 | 0.5488 | 0.9441 |
0.0082 | 11.0 | 1661 | 0.3432 | 0.5482 | 0.5270 | 0.5374 | 0.9455 |
0.0082 | 12.0 | 1812 | 0.3305 | 0.5590 | 0.5716 | 0.5652 | 0.9445 |
0.0082 | 13.0 | 1963 | 0.3293 | 0.5434 | 0.6009 | 0.5707 | 0.9431 |
0.005 | 14.0 | 2114 | 0.4080 | 0.5627 | 0.5803 | 0.5713 | 0.9451 |
0.005 | 15.0 | 2265 | 0.3752 | 0.5495 | 0.5949 | 0.5713 | 0.9455 |
0.005 | 16.0 | 2416 | 0.4140 | 0.5823 | 0.5470 | 0.5641 | 0.9455 |
0.002 | 17.0 | 2567 | 0.4308 | 0.5555 | 0.5670 | 0.5612 | 0.9438 |
0.002 | 18.0 | 2718 | 0.4389 | 0.5594 | 0.5676 | 0.5635 | 0.9436 |
0.002 | 19.0 | 2869 | 0.4463 | 0.5609 | 0.5676 | 0.5642 | 0.9444 |
0.0007 | 20.0 | 3020 | 0.4512 | 0.5648 | 0.5636 | 0.5642 | 0.9448 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for autosyrup/bert
Base model
google-bert/bert-base-cased