File size: 15,059 Bytes
52bb403 7c43870 81658fb 52bb403 9fdbe51 52bb403 8658bac 7385e74 8658bac 7385e74 8658bac 7385e74 e1f5244 7385e74 8658bac e1f5244 8658bac 0314bc4 8658bac 7385e74 8658bac 7385e74 8658bac 9fdbe51 e1f5244 52bb403 a71d5b3 52bb403 a71d5b3 52bb403 a71d5b3 52bb403 a71d5b3 52bb403 a71d5b3 8658bac a71d5b3 8658bac a71d5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# my_custom_olmoe/modeling_custom.py
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from .configuration_densebackward_olmoe0125 import DenseBackwardOLMoEConfig
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
"""
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
前向输出依旧保持与官方相同(即稀疏计算结果),
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
输入:
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
输出:
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
"""
def forward(self, hidden_states: torch.Tensor):
# determine the shape of hidden_states
batch_size, seq_length, hidden_dim = hidden_states.shape
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
total_tokens = flat_hidden.size(0)
# 计算路由 logits 和全专家 routing 权重
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
# Top-k 选择
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
# ---------- 稀疏计算部分 ----------
# 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
sparse_output = torch.zeros((total_tokens, hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
# 创建一个张量存储激活专家的输出,避免使用Python字典
# shape: (B*seq_len, num_experts, hidden_dim)
all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim),
dtype=flat_hidden.dtype, device=flat_hidden.device)
# 使用张量掩码跟踪哪些专家被激活
# shape: (B*seq_len, num_experts)
expert_activated = torch.zeros((total_tokens, self.num_experts),
dtype=torch.bool, device=flat_hidden.device)
# one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.numel() > 0:
current_state = flat_hidden[top_x] # (n, hidden_dim)
current_output = expert_layer(current_state) # (n, hidden_dim)
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
weighted_output = current_output * weight
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
# 直接为激活的token分配专家输出
for i in range(top_x.shape[0]):
token_idx = top_x[i]
all_expert_outputs[token_idx, expert_idx] = current_output[i]
expert_activated[token_idx, expert_idx] = True
# ---------- 稀疏计算结束 ----------
# ---------- Dense估计部分 ----------
# 从GPU获取必要信息,避免过多的tensor->list转换
selected_experts_gpu = selected_experts # 保持在GPU上
# 预分配结果张量,避免在循环中append
dense_outputs = torch.zeros_like(sparse_output)
# 使用向量化的estimate_dense_output函数
dense_outputs = self.estimate_dense_output_batch(
total_tokens=total_tokens,
selected_experts=selected_experts_gpu,
routing_weights=routing_weights,
expert_activated=expert_activated,
all_expert_outputs=all_expert_outputs
)
# ---------- Dense估计结束 ----------
# 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
return final_output, router_logits
def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights,
expert_activated, all_expert_outputs):
"""
批量估计所有token的dense输出,优化版本。
参数:
total_tokens: token总数
selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
routing_weights: 路由权重,形状 (total_tokens, num_experts)
expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
返回:
dense_outputs: 形状 (total_tokens, hidden_dim)
"""
hidden_dim = all_expert_outputs.size(-1)
num_experts = routing_weights.size(1)
device = all_expert_outputs.device
# 预分配结果张量,注意是hidden_dim而不是num_experts
dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
# 对每个token单独处理(此处仍需循环,但后续可进一步优化)
for token_idx in range(total_tokens):
# 对于激活的专家,直接使用输出
activated_mask = expert_activated[token_idx] # (num_experts,)
# 对于未激活的专家,找到估计值
for expert_idx in range(num_experts):
if activated_mask[expert_idx]:
# 直接使用激活专家的输出
expert_output = all_expert_outputs[token_idx, expert_idx]
else:
# 寻找可以用于估计的输出
# 找出其他激活了当前专家的token
tokens_with_expert = expert_activated[:, expert_idx]
# 找出同时激活了当前token的某些专家和当前专家的其他token
# 首先获取当前token激活的专家
current_activated = selected_experts[token_idx]
# 在其他token中寻找同时激活了current_activated中专家和expert_idx的token
valid_tokens = torch.zeros(total_tokens, dtype=torch.bool, device=device)
# 对于每个其他token,检查它是否同时激活了当前token的某个专家和当前专家
for other_token in range(total_tokens):
if other_token == token_idx:
continue
# 检查其他token是否激活了当前专家
if expert_activated[other_token, expert_idx]:
# 检查是否有共同激活的专家
other_experts = selected_experts[other_token]
common = torch.any(torch.isin(other_experts, current_activated))
if common:
valid_tokens[other_token] = True
# 如果找到了有效token
if valid_tokens.any():
# 获取有效token对当前专家的输出
valid_outputs = all_expert_outputs[valid_tokens, expert_idx]
# 只计算非零值的平均值
mask = (valid_outputs.sum(dim=-1) != 0).to(valid_outputs.dtype).unsqueeze(-1)
if mask.sum() > 0:
expert_output = (valid_outputs * mask).sum(dim=0) / mask.sum()
else:
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
else:
# 如果没有找到有效token,使用所有激活了当前专家的token的输出
if tokens_with_expert.any():
all_valid_outputs = all_expert_outputs[tokens_with_expert, expert_idx]
mask = (all_valid_outputs.sum(dim=-1) != 0).to(all_valid_outputs.dtype).unsqueeze(-1)
if mask.sum() > 0:
expert_output = (all_valid_outputs * mask).sum(dim=0) / mask.sum()
else:
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
else:
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
# 根据routing权重加权
dense_outputs[token_idx] += routing_weights[token_idx, expert_idx] * expert_output
return dense_outputs
def estimate_dense_output(self, token_idx, activated, gate_prob, activated_outputs, all_routing, all_expert_outputs):
"""
对于当前 token,根据 mini-batch 中的信息估计 dense 输出。
参数:
token_idx: 当前 token 的索引(标量)
activated: 当前 token 激活的专家列表,例如 [1, 3]
gate_prob: 当前 token 的 routing 权重,形状 (num_experts,)
activated_outputs: dict,当前 token 对激活专家的实际输出,形状 (hidden_dim,)
all_routing: list,每个 token 的激活专家列表(长度为 N,每个元素为 list)
all_expert_outputs: Tensor, (N, num_experts, hidden_dim)
返回:
estimated_dense: Tensor, (hidden_dim,)
"""
num_experts = gate_prob.size(0)
dense_parts = {}
# 对于激活的专家,直接使用其实际输出
for idx in activated:
dense_parts[idx] = activated_outputs[idx]
# 对于未激活的专家,使用 mini-batch 中其他 token 的输出估计
non_activated = [i for i in range(num_experts) if i not in activated]
for i in non_activated:
indices = []
for idx, r_dec in enumerate(all_routing):
if (i in r_dec) and (len(set(r_dec) & set(activated)) > 0):
indices.append(idx)
if indices:
selected_outputs = all_expert_outputs[indices, i, :] # (n, hidden_dim)
# 只计算非零值的平均值
mask = (selected_outputs.sum(dim=-1) != 0).to(selected_outputs.dtype).unsqueeze(-1)
if mask.sum() > 0:
estimated = (selected_outputs * mask).sum(dim=0) / mask.sum()
else:
# 如果全是零,返回零向量
estimated = torch.zeros_like(selected_outputs[0])
else:
all_outputs = all_expert_outputs[:, i, :]
mask = (all_outputs.sum(dim=-1) != 0).to(all_outputs.dtype).unsqueeze(-1)
if mask.sum() > 0:
estimated = (all_outputs * mask).sum(dim=0) / mask.sum()
else:
# 如果全是零,返回零向量
estimated = torch.zeros_like(all_outputs[0])
dense_parts[i] = estimated
# 按 gate_prob 加权求和各专家输出
estimated_dense = 0
for i in range(num_experts):
estimated_dense += gate_prob[i] * dense_parts[i]
return estimated_dense
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
"""
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
以实现 dense backward 功能。
配置类:DenseBackwardOLMoEConfig
"""
config_class = DenseBackwardOLMoEConfig
base_model_prefix = "olmoe"
def __init__(self, config):
# 首先调用父类初始化方法
super().__init__(config)
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
# 复制预训练模型的状态到当前模型
self.config = pretrained_model.config
self.model = pretrained_model.model
self.vocab_size = pretrained_model.vocab_size
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
self.num_experts = pretrained_model.num_experts
self.lm_head = pretrained_model.lm_head
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
# 且每层中 mlp 模块包含属性 sparse_moe_block。
for layer in self.model.layers:
if hasattr(layer.mlp, "gate"):
print("111")
orig_block = layer.mlp
# 通过直接复制原版属性创建新的块
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
# 然后手动复制需要共享的属性:
new_block.gate = orig_block.gate
new_block.experts = orig_block.experts
new_block.num_experts = orig_block.num_experts
new_block.top_k = orig_block.top_k
new_block.norm_topk_prob = orig_block.norm_topk_prob
layer.mlp = new_block
print(type(layer.mlp))
def main():
config = DenseBackwardOLMoEConfig( # 官方模型参数
model_marker="DenseBackward_olmoe_marker",
)
# 创建自定义模型实例
model = DenseBackwardOLMoEForCausalLM(config)
print(type(model))
print(type(model.model))
print(type(model.model.layers[0]))
print(type(model.model.layers[0].mlp))
print(type(model.model.layers[0].mlp.experts))
if __name__ == "__main__":
main() |