File size: 15,059 Bytes
52bb403
 
 
 
 
 
 
7c43870
81658fb
52bb403
 
 
9fdbe51
 
 
 
 
 
 
 
 
 
 
 
52bb403
8658bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7385e74
8658bac
 
 
 
7385e74
8658bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7385e74
e1f5244
 
 
 
 
7385e74
8658bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f5244
8658bac
 
 
 
 
 
 
 
 
 
 
 
0314bc4
8658bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7385e74
8658bac
7385e74
 
 
8658bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fdbe51
e1f5244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bb403
 
 
 
 
 
 
 
 
 
 
 
a71d5b3
52bb403
a71d5b3
 
 
 
 
 
 
 
 
 
 
 
52bb403
 
 
 
a71d5b3
 
 
52bb403
 
 
 
 
 
 
 
a71d5b3
 
52bb403
a71d5b3
 
 
8658bac
 
a71d5b3
 
 
 
 
 
8658bac
a71d5b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# my_custom_olmoe/modeling_custom.py

import torch
import torch.nn as nn
import torch.nn.functional as F

# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from .configuration_densebackward_olmoe0125 import DenseBackwardOLMoEConfig


class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
    """
    继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
    前向输出依旧保持与官方相同(即稀疏计算结果),
    但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
    dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
    
    输入:
        hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
    输出:
        final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
        router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
    """
    def forward(self, hidden_states: torch.Tensor):
        # determine the shape of hidden_states
        batch_size, seq_length, hidden_dim = hidden_states.shape
        flat_hidden = hidden_states.view(-1, hidden_dim)  # (B*seq_len, hidden_dim)
        total_tokens = flat_hidden.size(0)

        # 计算路由 logits 和全专家 routing 权重
        router_logits = self.gate(flat_hidden)  # (B*seq_len, num_experts)
        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)  # (B*seq_len, num_experts)

        # Top-k 选择
        routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
        if self.norm_topk_prob:
            routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
        routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)

        # ---------- 稀疏计算部分 ----------
        # 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
        sparse_output = torch.zeros((total_tokens, hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
        
        # 创建一个张量存储激活专家的输出,避免使用Python字典
        # shape: (B*seq_len, num_experts, hidden_dim)
        all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim), 
                                       dtype=flat_hidden.dtype, device=flat_hidden.device)
        
        # 使用张量掩码跟踪哪些专家被激活
        # shape: (B*seq_len, num_experts)
        expert_activated = torch.zeros((total_tokens, self.num_experts), 
                                      dtype=torch.bool, device=flat_hidden.device)
        
        # one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
        expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts)  # (B*seq_len, top_k, num_experts)
        expert_mask = expert_mask.permute(2, 1, 0)  # (num_experts, top_k, B*seq_len)

        for expert_idx in range(self.num_experts):
            expert_layer = self.experts[expert_idx]
            idx, top_x = torch.where(expert_mask[expert_idx])
            if top_x.numel() > 0:
                current_state = flat_hidden[top_x]  # (n, hidden_dim)
                current_output = expert_layer(current_state)  # (n, hidden_dim)
                weight = routing_weights_topk[top_x, idx].unsqueeze(-1)  # (n, 1)
                weighted_output = current_output * weight
                sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
                
                # 直接为激活的token分配专家输出
                for i in range(top_x.shape[0]):
                    token_idx = top_x[i]
                    all_expert_outputs[token_idx, expert_idx] = current_output[i]
                    expert_activated[token_idx, expert_idx] = True
                
        # ---------- 稀疏计算结束 ----------

        # ---------- Dense估计部分 ----------
        # 从GPU获取必要信息,避免过多的tensor->list转换
        selected_experts_gpu = selected_experts  # 保持在GPU上

        # 预分配结果张量,避免在循环中append
        dense_outputs = torch.zeros_like(sparse_output)
        
        # 使用向量化的estimate_dense_output函数
        dense_outputs = self.estimate_dense_output_batch(
            total_tokens=total_tokens,
            selected_experts=selected_experts_gpu,
            routing_weights=routing_weights,
            expert_activated=expert_activated,
            all_expert_outputs=all_expert_outputs
        )
        # ---------- Dense估计结束 ----------

        # 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
        final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
        final_output = final_flat.view(batch_size, seq_length, hidden_dim)
        return final_output, router_logits

    def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights, 
                                  expert_activated, all_expert_outputs):
        """
        批量估计所有token的dense输出,优化版本。
        
        参数:
            total_tokens: token总数
            selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
            routing_weights: 路由权重,形状 (total_tokens, num_experts)
            expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
            all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
            
        返回:
            dense_outputs: 形状 (total_tokens, hidden_dim)
        """
        hidden_dim = all_expert_outputs.size(-1)
        num_experts = routing_weights.size(1)
        device = all_expert_outputs.device
        
        # 预分配结果张量,注意是hidden_dim而不是num_experts
        dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
        
        # 对每个token单独处理(此处仍需循环,但后续可进一步优化)
        for token_idx in range(total_tokens):
            # 对于激活的专家,直接使用输出
            activated_mask = expert_activated[token_idx]  # (num_experts,)
            
            # 对于未激活的专家,找到估计值
            for expert_idx in range(num_experts):
                if activated_mask[expert_idx]:
                    # 直接使用激活专家的输出
                    expert_output = all_expert_outputs[token_idx, expert_idx]
                else:
                    # 寻找可以用于估计的输出
                    # 找出其他激活了当前专家的token
                    tokens_with_expert = expert_activated[:, expert_idx]
                    
                    # 找出同时激活了当前token的某些专家和当前专家的其他token
                    # 首先获取当前token激活的专家
                    current_activated = selected_experts[token_idx]
                    
                    # 在其他token中寻找同时激活了current_activated中专家和expert_idx的token
                    valid_tokens = torch.zeros(total_tokens, dtype=torch.bool, device=device)
                    
                    # 对于每个其他token,检查它是否同时激活了当前token的某个专家和当前专家
                    for other_token in range(total_tokens):
                        if other_token == token_idx:
                            continue
                        
                        # 检查其他token是否激活了当前专家
                        if expert_activated[other_token, expert_idx]:
                            # 检查是否有共同激活的专家
                            other_experts = selected_experts[other_token]
                            common = torch.any(torch.isin(other_experts, current_activated))
                            if common:
                                valid_tokens[other_token] = True
                    
                    # 如果找到了有效token
                    if valid_tokens.any():
                        # 获取有效token对当前专家的输出
                        valid_outputs = all_expert_outputs[valid_tokens, expert_idx]
                        # 只计算非零值的平均值
                        mask = (valid_outputs.sum(dim=-1) != 0).to(valid_outputs.dtype).unsqueeze(-1)
                        if mask.sum() > 0:
                            expert_output = (valid_outputs * mask).sum(dim=0) / mask.sum()
                        else:
                            expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
                    else:
                        # 如果没有找到有效token,使用所有激活了当前专家的token的输出
                        if tokens_with_expert.any():
                            all_valid_outputs = all_expert_outputs[tokens_with_expert, expert_idx]
                            mask = (all_valid_outputs.sum(dim=-1) != 0).to(all_valid_outputs.dtype).unsqueeze(-1)
                            if mask.sum() > 0:
                                expert_output = (all_valid_outputs * mask).sum(dim=0) / mask.sum()
                            else:
                                expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
                        else:
                            expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
                
                # 根据routing权重加权
                dense_outputs[token_idx] += routing_weights[token_idx, expert_idx] * expert_output
        
        return dense_outputs

    def estimate_dense_output(self, token_idx, activated, gate_prob, activated_outputs, all_routing, all_expert_outputs):
        """
        对于当前 token,根据 mini-batch 中的信息估计 dense 输出。
        参数:
            token_idx: 当前 token 的索引(标量)
            activated: 当前 token 激活的专家列表,例如 [1, 3]
            gate_prob: 当前 token 的 routing 权重,形状 (num_experts,)
            activated_outputs: dict,当前 token 对激活专家的实际输出,形状 (hidden_dim,)
            all_routing: list,每个 token 的激活专家列表(长度为 N,每个元素为 list)
            all_expert_outputs: Tensor, (N, num_experts, hidden_dim)
        返回:
            estimated_dense: Tensor, (hidden_dim,)
        """
        num_experts = gate_prob.size(0)
        dense_parts = {}
        # 对于激活的专家,直接使用其实际输出
        for idx in activated:
            dense_parts[idx] = activated_outputs[idx]
        # 对于未激活的专家,使用 mini-batch 中其他 token 的输出估计
        non_activated = [i for i in range(num_experts) if i not in activated]
        for i in non_activated:
            indices = []
            for idx, r_dec in enumerate(all_routing):
                if (i in r_dec) and (len(set(r_dec) & set(activated)) > 0):
                    indices.append(idx)
            if indices:
                selected_outputs = all_expert_outputs[indices, i, :]  # (n, hidden_dim)
                 # 只计算非零值的平均值
                mask = (selected_outputs.sum(dim=-1) != 0).to(selected_outputs.dtype).unsqueeze(-1)
                if mask.sum() > 0:
                    estimated = (selected_outputs * mask).sum(dim=0) / mask.sum()
                else:
                   # 如果全是零,返回零向量
                    estimated = torch.zeros_like(selected_outputs[0])
            else:
                all_outputs = all_expert_outputs[:, i, :]
                mask = (all_outputs.sum(dim=-1) != 0).to(all_outputs.dtype).unsqueeze(-1)
                if mask.sum() > 0:
                    estimated = (all_outputs * mask).sum(dim=0) / mask.sum()
                else:
                    # 如果全是零,返回零向量
                    estimated = torch.zeros_like(all_outputs[0])
            dense_parts[i] = estimated
        # 按 gate_prob 加权求和各专家输出
        estimated_dense = 0
        for i in range(num_experts):
            estimated_dense += gate_prob[i] * dense_parts[i]
        return estimated_dense


class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
    """
    自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
    以实现 dense backward 功能。
    
    配置类:DenseBackwardOLMoEConfig
    """
    config_class = DenseBackwardOLMoEConfig
    base_model_prefix = "olmoe"

    def __init__(self, config):
        # 首先调用父类初始化方法
        super().__init__(config)
        
        # 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
        pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
        
        # 复制预训练模型的状态到当前模型
        self.config = pretrained_model.config
        self.model = pretrained_model.model
        self.vocab_size = pretrained_model.vocab_size
        self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
        self.num_experts = pretrained_model.num_experts
        self.lm_head = pretrained_model.lm_head
        
        # 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
        # 此处假设官方模型在 self.model.layers 中组织 decoder 层,
        # 且每层中 mlp 模块包含属性 sparse_moe_block。
        for layer in self.model.layers:
            if hasattr(layer.mlp, "gate"):
                print("111")
                orig_block = layer.mlp
                # 通过直接复制原版属性创建新的块
                new_block = DenseBackwardOlmoeSparseMoeBlock(config)  # 或其他适当参数
                # 然后手动复制需要共享的属性:
                new_block.gate = orig_block.gate
                new_block.experts = orig_block.experts
                new_block.num_experts = orig_block.num_experts
                new_block.top_k = orig_block.top_k
                new_block.norm_topk_prob = orig_block.norm_topk_prob
                layer.mlp = new_block
                print(type(layer.mlp))

def main():
    config = DenseBackwardOLMoEConfig(        # 官方模型参数
    model_marker="DenseBackward_olmoe_marker",
    )
    # 创建自定义模型实例
    model = DenseBackwardOLMoEForCausalLM(config)
    print(type(model))
    print(type(model.model))
    print(type(model.model.layers[0]))
    print(type(model.model.layers[0].mlp))
    print(type(model.model.layers[0].mlp.experts))
    
if __name__ == "__main__":
    main()