autoprogrammer commited on
Commit
8658bac
·
verified ·
1 Parent(s): 7385e74

Update modeling_densebackward_olmoe0125.py

Browse files
Files changed (1) hide show
  1. modeling_densebackward_olmoe0125.py +161 -160
modeling_densebackward_olmoe0125.py CHANGED
@@ -23,173 +23,173 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
23
  router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
24
  """
25
  def forward(self, hidden_states: torch.Tensor):
26
- # determine the shape of hidden_states
27
- batch_size, seq_length, hidden_dim = hidden_states.shape
28
- flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
29
- total_tokens = flat_hidden.size(0)
30
-
31
- # 计算路由 logits 和全专家 routing 权重
32
- router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
33
- routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
34
-
35
- # Top-k 选择
36
- routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
37
- if self.norm_topk_prob:
38
- routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
39
- routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
40
-
41
- # ---------- 稀疏计算部分 ----------
42
- # 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
43
- sparse_output = torch.zeros((total_tokens, hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
44
-
45
- # 创建一个张量存储激活专家的输出,避免使用Python字典
46
- # shape: (B*seq_len, num_experts, hidden_dim)
47
- all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim),
48
- dtype=flat_hidden.dtype, device=flat_hidden.device)
49
-
50
- # 使用张量掩码跟踪哪些专家被激活
51
- # shape: (B*seq_len, num_experts)
52
- expert_activated = torch.zeros((total_tokens, self.num_experts),
53
- dtype=torch.bool, device=flat_hidden.device)
54
-
55
- # one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
56
- expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
57
- expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
58
-
59
- for expert_idx in range(self.num_experts):
60
- expert_layer = self.experts[expert_idx]
61
- idx, top_x = torch.where(expert_mask[expert_idx])
62
- if top_x.numel() > 0:
63
- current_state = flat_hidden[top_x] # (n, hidden_dim)
64
- current_output = expert_layer(current_state) # (n, hidden_dim)
65
- weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
66
- weighted_output = current_output * weight
67
- sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
68
-
69
- # 保存专家输出到张量中,而不是使用字典
70
- all_expert_outputs.index_copy_(0, top_x,
71
- torch.zeros_like(all_expert_outputs[0:top_x.size(0)]).scatter_(
72
- 1, expert_idx * torch.ones((top_x.size(0), 1),
73
- dtype=torch.long,
74
- device=flat_hidden.device),
75
- current_output.unsqueeze(1)))
76
-
77
- # 标记哪些专家被激活
78
- expert_activated.index_copy_(0, top_x,
79
- torch.zeros_like(expert_activated[0:top_x.size(0)]).scatter_(
80
- 1, expert_idx * torch.ones((top_x.size(0), 1),
81
- dtype=torch.long,
82
- device=flat_hidden.device),
83
- torch.ones((top_x.size(0), 1),
84
- dtype=torch.bool,
85
- device=flat_hidden.device)))
86
- # ---------- 稀疏计算结束 ----------
87
-
88
- # ---------- Dense估计部分 ----------
89
- # 从GPU获取必要信息,避免过多的tensor->list转换
90
- selected_experts_gpu = selected_experts # 保持在GPU上
91
-
92
- # 预分配结果张量,避免在循环中append
93
- dense_outputs = torch.zeros_like(sparse_output)
94
-
95
- # 使用向量化的estimate_dense_output函数
96
- dense_outputs = self.estimate_dense_output_batch(
97
- total_tokens=total_tokens,
98
- selected_experts=selected_experts_gpu,
99
- routing_weights=routing_weights,
100
- expert_activated=expert_activated,
101
- all_expert_outputs=all_expert_outputs
102
- )
103
- # ---------- Dense估计结束 ----------
104
-
105
- # 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
106
- final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
107
- final_output = final_flat.view(batch_size, seq_length, hidden_dim)
108
- return final_output, router_logits
109
-
110
- def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights,
111
- expert_activated, all_expert_outputs):
112
- """
113
- 批量估计所有token的dense输出,优化版本。
114
-
115
- 参数:
116
- total_tokens: token总数
117
- selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
118
- routing_weights: 路由权重,形状 (total_tokens, num_experts)
119
- expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
120
- all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
121
 
122
- 返回:
123
- dense_outputs: 形状 (total_tokens, hidden_dim)
124
- """
125
- hidden_dim = all_expert_outputs.size(-1)
126
- num_experts = routing_weights.size(1)
127
- device = all_expert_outputs.device
128
-
129
- # 预分配结果张量
130
- dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
131
-
132
- # 对每个token单独处理(此处仍需循环,但后续可进一步优化)
133
- for token_idx in range(total_tokens):
134
- # 对于激活的专家,直接使用输出
135
- activated_mask = expert_activated[token_idx] # (num_experts,)
136
 
137
- # 对于未激活的专家,找到估计值
138
- for expert_idx in range(num_experts):
139
- if activated_mask[expert_idx]:
140
- # 直接使用激活专家的输出
141
- expert_output = all_expert_outputs[token_idx, expert_idx]
142
- else:
143
- # 寻找可以用于估计的输出
144
- # 找出其他激活了当前专家的token
145
- tokens_with_expert = expert_activated[:, expert_idx]
146
-
147
- # 找出同时激活了当前token的某些专家和当前专家的其他token
148
- # 首先获取当前token激活的专家
149
- current_activated = selected_experts[token_idx]
150
-
151
- # 在其他token中寻找同时激活了current_activated中专家和expert_idx的token
152
- valid_tokens = torch.zeros(total_tokens, dtype=torch.bool, device=device)
 
 
153
 
154
- # 对于每个其他token,检查它是否同时激活了当前token的某个专家和当前专家
155
- for other_token in range(total_tokens):
156
- if other_token == token_idx:
157
- continue
158
-
159
- # 检查其他token是否激活了当前专家
160
- if expert_activated[other_token, expert_idx]:
161
- # 检查是否有共同激活的专家
162
- other_experts = selected_experts[other_token]
163
- common = torch.any(torch.isin(other_experts, current_activated))
164
- if common:
165
- valid_tokens[other_token] = True
166
 
167
- # 如果找到了有效token
168
- if valid_tokens.any():
169
- # 获取有效token对当前专家的输出
170
- valid_outputs = all_expert_outputs[valid_tokens, expert_idx]
171
- # 只计算非零值的平均值
172
- mask = (valid_outputs.sum(dim=-1) != 0).to(valid_outputs.dtype).unsqueeze(-1)
173
- if mask.sum() > 0:
174
- expert_output = (valid_outputs * mask).sum(dim=0) / mask.sum()
175
- else:
176
- expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
  else:
178
- # 如果没有找到有效token,使用所有激活了当前专家的token的输出
179
- if tokens_with_expert.any():
180
- all_valid_outputs = all_expert_outputs[tokens_with_expert, expert_idx]
181
- mask = (all_valid_outputs.sum(dim=-1) != 0).to(all_valid_outputs.dtype).unsqueeze(-1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
  if mask.sum() > 0:
183
- expert_output = (all_valid_outputs * mask).sum(dim=0) / mask.sum()
184
  else:
185
  expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
186
  else:
187
- expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
188
-
189
- # 根据routing权重加权
190
- dense_outputs[token_idx] += routing_weights[token_idx, expert_idx] * expert_output
191
-
192
- return dense_outputs
 
 
 
 
 
 
 
 
 
193
 
194
 
195
  class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
@@ -238,13 +238,14 @@ class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
238
  def main():
239
  config = DenseBackwardOLMoEConfig( # 官方模型参数
240
  model_marker="DenseBackward_olmoe_marker",
241
- )
242
- # 创建自定义模型实例
243
  model = DenseBackwardOLMoEForCausalLM(config)
244
  print(type(model))
245
  print(type(model.model))
246
  print(type(model.model.layers[0]))
247
  print(type(model.model.layers[0].mlp))
248
  print(type(model.model.layers[0].mlp.experts))
 
249
  if __name__ == "__main__":
250
  main()
 
23
  router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
24
  """
25
  def forward(self, hidden_states: torch.Tensor):
26
+ # determine the shape of hidden_states
27
+ batch_size, seq_length, hidden_dim = hidden_states.shape
28
+ flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
29
+ total_tokens = flat_hidden.size(0)
30
+
31
+ # 计算路由 logits 和全专家 routing 权重
32
+ router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
33
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
34
+
35
+ # Top-k 选择
36
+ routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
37
+ if self.norm_topk_prob:
38
+ routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
39
+ routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
40
+
41
+ # ---------- 稀疏计算部分 ----------
42
+ # 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
43
+ sparse_output = torch.zeros((total_tokens, hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ # 创建一个张量存储激活专家的输出,避免使用Python字典
46
+ # shape: (B*seq_len, num_experts, hidden_dim)
47
+ all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim),
48
+ dtype=flat_hidden.dtype, device=flat_hidden.device)
 
 
 
 
 
 
 
 
 
 
49
 
50
+ # 使用张量掩码跟踪哪些专家被激活
51
+ # shape: (B*seq_len, num_experts)
52
+ expert_activated = torch.zeros((total_tokens, self.num_experts),
53
+ dtype=torch.bool, device=flat_hidden.device)
54
+
55
+ # one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
56
+ expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
57
+ expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
58
+
59
+ for expert_idx in range(self.num_experts):
60
+ expert_layer = self.experts[expert_idx]
61
+ idx, top_x = torch.where(expert_mask[expert_idx])
62
+ if top_x.numel() > 0:
63
+ current_state = flat_hidden[top_x] # (n, hidden_dim)
64
+ current_output = expert_layer(current_state) # (n, hidden_dim)
65
+ weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
66
+ weighted_output = current_output * weight
67
+ sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
68
 
69
+ # 保存专家输出到张量中,而不是使用字典
70
+ all_expert_outputs.index_copy_(0, top_x,
71
+ torch.zeros_like(all_expert_outputs[0:top_x.size(0)]).scatter_(
72
+ 1, expert_idx * torch.ones((top_x.size(0), 1),
73
+ dtype=torch.long,
74
+ device=flat_hidden.device),
75
+ current_output.unsqueeze(1)))
 
 
 
 
 
76
 
77
+ # 标记哪些专家被激活
78
+ expert_activated.index_copy_(0, top_x,
79
+ torch.zeros_like(expert_activated[0:top_x.size(0)]).scatter_(
80
+ 1, expert_idx * torch.ones((top_x.size(0), 1),
81
+ dtype=torch.long,
82
+ device=flat_hidden.device),
83
+ torch.ones((top_x.size(0), 1),
84
+ dtype=torch.bool,
85
+ device=flat_hidden.device)))
86
+ # ---------- 稀疏计算结束 ----------
87
+
88
+ # ---------- Dense估计部分 ----------
89
+ # 从GPU获取必要信息,避免过多的tensor->list转换
90
+ selected_experts_gpu = selected_experts # 保持在GPU上
91
+
92
+ # 预分配结果张量,避免在循环中append
93
+ dense_outputs = torch.zeros_like(sparse_output)
94
+
95
+ # 使用向量化的estimate_dense_output函数
96
+ dense_outputs = self.estimate_dense_output_batch(
97
+ total_tokens=total_tokens,
98
+ selected_experts=selected_experts_gpu,
99
+ routing_weights=routing_weights,
100
+ expert_activated=expert_activated,
101
+ all_expert_outputs=all_expert_outputs
102
+ )
103
+ # ---------- Dense估计结束 ----------
104
+
105
+ # 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
106
+ final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
107
+ final_output = final_flat.view(batch_size, seq_length, hidden_dim)
108
+ return final_output, router_logits
109
+
110
+ def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights,
111
+ expert_activated, all_expert_outputs):
112
+ """
113
+ 批量估计所有token的dense输出,优化版本。
114
+
115
+ 参数:
116
+ total_tokens: token总数
117
+ selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
118
+ routing_weights: 路由权重,形状 (total_tokens, num_experts)
119
+ expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
120
+ all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
121
+
122
+ 返回:
123
+ dense_outputs: 形状 (total_tokens, hidden_dim)
124
+ """
125
+ hidden_dim = all_expert_outputs.size(-1)
126
+ num_experts = routing_weights.size(1)
127
+ device = all_expert_outputs.device
128
+
129
+ # 预分配结果张量
130
+ dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
131
+
132
+ # 对每个token单独处理(此处仍需循环,但后续可进一步优化)
133
+ for token_idx in range(total_tokens):
134
+ # 对于激活的专家,直接使用输出
135
+ activated_mask = expert_activated[token_idx] # (num_experts,)
136
+
137
+ # 对于未激活的专家,找到估计值
138
+ for expert_idx in range(num_experts):
139
+ if activated_mask[expert_idx]:
140
+ # 直接使用激活专家的输出
141
+ expert_output = all_expert_outputs[token_idx, expert_idx]
142
  else:
143
+ # 寻找可以用于估计的输出
144
+ # 找出其他激活了当前专家的token
145
+ tokens_with_expert = expert_activated[:, expert_idx]
146
+
147
+ # 找出同时激活了当前token的某些专家和当前专家的其他token
148
+ # 首先获取当前token激活的专家
149
+ current_activated = selected_experts[token_idx]
150
+
151
+ # 在其他token中寻找同时激活了current_activated中专家和expert_idx的token
152
+ valid_tokens = torch.zeros(total_tokens, dtype=torch.bool, device=device)
153
+
154
+ # 对于每个其他token,检查它是否同时激活了当前token的某个专家和当前专家
155
+ for other_token in range(total_tokens):
156
+ if other_token == token_idx:
157
+ continue
158
+
159
+ # 检查其他token是否激活了当前专家
160
+ if expert_activated[other_token, expert_idx]:
161
+ # 检查是否有共同激活的专家
162
+ other_experts = selected_experts[other_token]
163
+ common = torch.any(torch.isin(other_experts, current_activated))
164
+ if common:
165
+ valid_tokens[other_token] = True
166
+
167
+ # 如果找到了有效token
168
+ if valid_tokens.any():
169
+ # 获取有效token对当前专家的输出
170
+ valid_outputs = all_expert_outputs[valid_tokens, expert_idx]
171
+ # 只计算非零值的平均值
172
+ mask = (valid_outputs.sum(dim=-1) != 0).to(valid_outputs.dtype).unsqueeze(-1)
173
  if mask.sum() > 0:
174
+ expert_output = (valid_outputs * mask).sum(dim=0) / mask.sum()
175
  else:
176
  expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
177
  else:
178
+ # 如果没有找到有效token,使用所有激活了当前专家的token的输出
179
+ if tokens_with_expert.any():
180
+ all_valid_outputs = all_expert_outputs[tokens_with_expert, expert_idx]
181
+ mask = (all_valid_outputs.sum(dim=-1) != 0).to(all_valid_outputs.dtype).unsqueeze(-1)
182
+ if mask.sum() > 0:
183
+ expert_output = (all_valid_outputs * mask).sum(dim=0) / mask.sum()
184
+ else:
185
+ expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
186
+ else:
187
+ expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
188
+
189
+ # 根据routing权重加权
190
+ dense_outputs[token_idx] += routing_weights[token_idx, expert_idx] * expert_output
191
+
192
+ return dense_outputs
193
 
194
 
195
  class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
 
238
  def main():
239
  config = DenseBackwardOLMoEConfig( # 官方模型参数
240
  model_marker="DenseBackward_olmoe_marker",
241
+ )
242
+ # 创建自定义模型实例
243
  model = DenseBackwardOLMoEForCausalLM(config)
244
  print(type(model))
245
  print(type(model.model))
246
  print(type(model.model.layers[0]))
247
  print(type(model.model.layers[0].mlp))
248
  print(type(model.model.layers[0].mlp.experts))
249
+
250
  if __name__ == "__main__":
251
  main()