Update modeling_densebackward_olmoe0125.py
Browse files- modeling_densebackward_olmoe0125.py +161 -160
modeling_densebackward_olmoe0125.py
CHANGED
|
@@ -23,173 +23,173 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
|
|
| 23 |
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
|
| 24 |
"""
|
| 25 |
def forward(self, hidden_states: torch.Tensor):
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# 创建一个张量存储激活专家的输出,避免使用Python字典
|
| 46 |
-
# shape: (B*seq_len, num_experts, hidden_dim)
|
| 47 |
-
all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim),
|
| 48 |
-
dtype=flat_hidden.dtype, device=flat_hidden.device)
|
| 49 |
-
|
| 50 |
-
# 使用张量掩码跟踪哪些专家被激活
|
| 51 |
-
# shape: (B*seq_len, num_experts)
|
| 52 |
-
expert_activated = torch.zeros((total_tokens, self.num_experts),
|
| 53 |
-
dtype=torch.bool, device=flat_hidden.device)
|
| 54 |
-
|
| 55 |
-
# one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
|
| 56 |
-
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
|
| 57 |
-
expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
|
| 58 |
-
|
| 59 |
-
for expert_idx in range(self.num_experts):
|
| 60 |
-
expert_layer = self.experts[expert_idx]
|
| 61 |
-
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 62 |
-
if top_x.numel() > 0:
|
| 63 |
-
current_state = flat_hidden[top_x] # (n, hidden_dim)
|
| 64 |
-
current_output = expert_layer(current_state) # (n, hidden_dim)
|
| 65 |
-
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
|
| 66 |
-
weighted_output = current_output * weight
|
| 67 |
-
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
|
| 68 |
-
|
| 69 |
-
# 保存专家输出到张量中,而不是使用字典
|
| 70 |
-
all_expert_outputs.index_copy_(0, top_x,
|
| 71 |
-
torch.zeros_like(all_expert_outputs[0:top_x.size(0)]).scatter_(
|
| 72 |
-
1, expert_idx * torch.ones((top_x.size(0), 1),
|
| 73 |
-
dtype=torch.long,
|
| 74 |
-
device=flat_hidden.device),
|
| 75 |
-
current_output.unsqueeze(1)))
|
| 76 |
-
|
| 77 |
-
# 标记哪些专家被激活
|
| 78 |
-
expert_activated.index_copy_(0, top_x,
|
| 79 |
-
torch.zeros_like(expert_activated[0:top_x.size(0)]).scatter_(
|
| 80 |
-
1, expert_idx * torch.ones((top_x.size(0), 1),
|
| 81 |
-
dtype=torch.long,
|
| 82 |
-
device=flat_hidden.device),
|
| 83 |
-
torch.ones((top_x.size(0), 1),
|
| 84 |
-
dtype=torch.bool,
|
| 85 |
-
device=flat_hidden.device)))
|
| 86 |
-
# ---------- 稀疏计算结束 ----------
|
| 87 |
-
|
| 88 |
-
# ---------- Dense估计部分 ----------
|
| 89 |
-
# 从GPU获取必要信息,避免过多的tensor->list转换
|
| 90 |
-
selected_experts_gpu = selected_experts # 保持在GPU上
|
| 91 |
-
|
| 92 |
-
# 预分配结果张量,避免在循环中append
|
| 93 |
-
dense_outputs = torch.zeros_like(sparse_output)
|
| 94 |
-
|
| 95 |
-
# 使用向量化的estimate_dense_output函数
|
| 96 |
-
dense_outputs = self.estimate_dense_output_batch(
|
| 97 |
-
total_tokens=total_tokens,
|
| 98 |
-
selected_experts=selected_experts_gpu,
|
| 99 |
-
routing_weights=routing_weights,
|
| 100 |
-
expert_activated=expert_activated,
|
| 101 |
-
all_expert_outputs=all_expert_outputs
|
| 102 |
-
)
|
| 103 |
-
# ---------- Dense估计结束 ----------
|
| 104 |
-
|
| 105 |
-
# 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
|
| 106 |
-
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
|
| 107 |
-
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
|
| 108 |
-
return final_output, router_logits
|
| 109 |
-
|
| 110 |
-
def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights,
|
| 111 |
-
expert_activated, all_expert_outputs):
|
| 112 |
-
"""
|
| 113 |
-
批量估计所有token的dense输出,优化版本。
|
| 114 |
-
|
| 115 |
-
参数:
|
| 116 |
-
total_tokens: token总数
|
| 117 |
-
selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
|
| 118 |
-
routing_weights: 路由权重,形状 (total_tokens, num_experts)
|
| 119 |
-
expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
|
| 120 |
-
all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
num_experts = routing_weights.size(1)
|
| 127 |
-
device = all_expert_outputs.device
|
| 128 |
-
|
| 129 |
-
# 预分配结果张量
|
| 130 |
-
dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
|
| 131 |
-
|
| 132 |
-
# 对每个token单独处理(此处仍需循环,但后续可进一步优化)
|
| 133 |
-
for token_idx in range(total_tokens):
|
| 134 |
-
# 对于激活的专家,直接使用输出
|
| 135 |
-
activated_mask = expert_activated[token_idx] # (num_experts,)
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
#
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
#
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# 检查是否有共同激活的专家
|
| 162 |
-
other_experts = selected_experts[other_token]
|
| 163 |
-
common = torch.any(torch.isin(other_experts, current_activated))
|
| 164 |
-
if common:
|
| 165 |
-
valid_tokens[other_token] = True
|
| 166 |
|
| 167 |
-
#
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
else:
|
| 178 |
-
#
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if mask.sum() > 0:
|
| 183 |
-
expert_output = (
|
| 184 |
else:
|
| 185 |
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
|
| 186 |
else:
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
|
| 195 |
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
|
|
@@ -238,13 +238,14 @@ class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
|
|
| 238 |
def main():
|
| 239 |
config = DenseBackwardOLMoEConfig( # 官方模型参数
|
| 240 |
model_marker="DenseBackward_olmoe_marker",
|
| 241 |
-
)
|
| 242 |
-
# 创建自定义模型实例
|
| 243 |
model = DenseBackwardOLMoEForCausalLM(config)
|
| 244 |
print(type(model))
|
| 245 |
print(type(model.model))
|
| 246 |
print(type(model.model.layers[0]))
|
| 247 |
print(type(model.model.layers[0].mlp))
|
| 248 |
print(type(model.model.layers[0].mlp.experts))
|
|
|
|
| 249 |
if __name__ == "__main__":
|
| 250 |
main()
|
|
|
|
| 23 |
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
|
| 24 |
"""
|
| 25 |
def forward(self, hidden_states: torch.Tensor):
|
| 26 |
+
# determine the shape of hidden_states
|
| 27 |
+
batch_size, seq_length, hidden_dim = hidden_states.shape
|
| 28 |
+
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
|
| 29 |
+
total_tokens = flat_hidden.size(0)
|
| 30 |
+
|
| 31 |
+
# 计算路由 logits 和全专家 routing 权重
|
| 32 |
+
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
|
| 33 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
|
| 34 |
+
|
| 35 |
+
# Top-k 选择
|
| 36 |
+
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 37 |
+
if self.norm_topk_prob:
|
| 38 |
+
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
|
| 39 |
+
routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
|
| 40 |
+
|
| 41 |
+
# ---------- 稀疏计算部分 ----------
|
| 42 |
+
# 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
|
| 43 |
+
sparse_output = torch.zeros((total_tokens, hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# 创建一个张量存储激活专家的输出,避免使用Python字典
|
| 46 |
+
# shape: (B*seq_len, num_experts, hidden_dim)
|
| 47 |
+
all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim),
|
| 48 |
+
dtype=flat_hidden.dtype, device=flat_hidden.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# 使用张量掩码跟踪哪些专家被激活
|
| 51 |
+
# shape: (B*seq_len, num_experts)
|
| 52 |
+
expert_activated = torch.zeros((total_tokens, self.num_experts),
|
| 53 |
+
dtype=torch.bool, device=flat_hidden.device)
|
| 54 |
+
|
| 55 |
+
# one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
|
| 56 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
|
| 57 |
+
expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
|
| 58 |
+
|
| 59 |
+
for expert_idx in range(self.num_experts):
|
| 60 |
+
expert_layer = self.experts[expert_idx]
|
| 61 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 62 |
+
if top_x.numel() > 0:
|
| 63 |
+
current_state = flat_hidden[top_x] # (n, hidden_dim)
|
| 64 |
+
current_output = expert_layer(current_state) # (n, hidden_dim)
|
| 65 |
+
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
|
| 66 |
+
weighted_output = current_output * weight
|
| 67 |
+
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
|
| 68 |
|
| 69 |
+
# 保存专家输出到张量中,而不是使用字典
|
| 70 |
+
all_expert_outputs.index_copy_(0, top_x,
|
| 71 |
+
torch.zeros_like(all_expert_outputs[0:top_x.size(0)]).scatter_(
|
| 72 |
+
1, expert_idx * torch.ones((top_x.size(0), 1),
|
| 73 |
+
dtype=torch.long,
|
| 74 |
+
device=flat_hidden.device),
|
| 75 |
+
current_output.unsqueeze(1)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# 标记哪些专家被激活
|
| 78 |
+
expert_activated.index_copy_(0, top_x,
|
| 79 |
+
torch.zeros_like(expert_activated[0:top_x.size(0)]).scatter_(
|
| 80 |
+
1, expert_idx * torch.ones((top_x.size(0), 1),
|
| 81 |
+
dtype=torch.long,
|
| 82 |
+
device=flat_hidden.device),
|
| 83 |
+
torch.ones((top_x.size(0), 1),
|
| 84 |
+
dtype=torch.bool,
|
| 85 |
+
device=flat_hidden.device)))
|
| 86 |
+
# ---------- 稀疏计算结束 ----------
|
| 87 |
+
|
| 88 |
+
# ---------- Dense估计部分 ----------
|
| 89 |
+
# 从GPU获取必要信息,避免过多的tensor->list转换
|
| 90 |
+
selected_experts_gpu = selected_experts # 保持在GPU上
|
| 91 |
+
|
| 92 |
+
# 预分配结果张量,避免在循环中append
|
| 93 |
+
dense_outputs = torch.zeros_like(sparse_output)
|
| 94 |
+
|
| 95 |
+
# 使用向量化的estimate_dense_output函数
|
| 96 |
+
dense_outputs = self.estimate_dense_output_batch(
|
| 97 |
+
total_tokens=total_tokens,
|
| 98 |
+
selected_experts=selected_experts_gpu,
|
| 99 |
+
routing_weights=routing_weights,
|
| 100 |
+
expert_activated=expert_activated,
|
| 101 |
+
all_expert_outputs=all_expert_outputs
|
| 102 |
+
)
|
| 103 |
+
# ---------- Dense估计结束 ----------
|
| 104 |
+
|
| 105 |
+
# 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
|
| 106 |
+
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
|
| 107 |
+
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
|
| 108 |
+
return final_output, router_logits
|
| 109 |
+
|
| 110 |
+
def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights,
|
| 111 |
+
expert_activated, all_expert_outputs):
|
| 112 |
+
"""
|
| 113 |
+
批量估计所有token的dense输出,优化版本。
|
| 114 |
+
|
| 115 |
+
参数:
|
| 116 |
+
total_tokens: token总数
|
| 117 |
+
selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
|
| 118 |
+
routing_weights: 路由权重,形状 (total_tokens, num_experts)
|
| 119 |
+
expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
|
| 120 |
+
all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
|
| 121 |
+
|
| 122 |
+
返回:
|
| 123 |
+
dense_outputs: 形状 (total_tokens, hidden_dim)
|
| 124 |
+
"""
|
| 125 |
+
hidden_dim = all_expert_outputs.size(-1)
|
| 126 |
+
num_experts = routing_weights.size(1)
|
| 127 |
+
device = all_expert_outputs.device
|
| 128 |
+
|
| 129 |
+
# 预分配结果张量
|
| 130 |
+
dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
|
| 131 |
+
|
| 132 |
+
# 对每个token单独处理(此处仍需循环,但后续可进一步优化)
|
| 133 |
+
for token_idx in range(total_tokens):
|
| 134 |
+
# 对于激活的专家,直接使用输出
|
| 135 |
+
activated_mask = expert_activated[token_idx] # (num_experts,)
|
| 136 |
+
|
| 137 |
+
# 对于未激活的专家,找到估计值
|
| 138 |
+
for expert_idx in range(num_experts):
|
| 139 |
+
if activated_mask[expert_idx]:
|
| 140 |
+
# 直接使用激活专家的输出
|
| 141 |
+
expert_output = all_expert_outputs[token_idx, expert_idx]
|
| 142 |
else:
|
| 143 |
+
# 寻找可以用于估计的输出
|
| 144 |
+
# 找出其他激活了当前专家的token
|
| 145 |
+
tokens_with_expert = expert_activated[:, expert_idx]
|
| 146 |
+
|
| 147 |
+
# 找出同时激活了当前token的某些专家和当前专家的其他token
|
| 148 |
+
# 首先获取当前token激活的专家
|
| 149 |
+
current_activated = selected_experts[token_idx]
|
| 150 |
+
|
| 151 |
+
# 在其他token中寻找同时激活了current_activated中专家和expert_idx的token
|
| 152 |
+
valid_tokens = torch.zeros(total_tokens, dtype=torch.bool, device=device)
|
| 153 |
+
|
| 154 |
+
# 对于每个其他token,检查它是否同时激活了当前token的某个专家和当前专家
|
| 155 |
+
for other_token in range(total_tokens):
|
| 156 |
+
if other_token == token_idx:
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
# 检查其他token是否激活了当前专家
|
| 160 |
+
if expert_activated[other_token, expert_idx]:
|
| 161 |
+
# 检查是否有共同激活的专家
|
| 162 |
+
other_experts = selected_experts[other_token]
|
| 163 |
+
common = torch.any(torch.isin(other_experts, current_activated))
|
| 164 |
+
if common:
|
| 165 |
+
valid_tokens[other_token] = True
|
| 166 |
+
|
| 167 |
+
# 如果找到了有效token
|
| 168 |
+
if valid_tokens.any():
|
| 169 |
+
# 获取有效token对当前专家的输出
|
| 170 |
+
valid_outputs = all_expert_outputs[valid_tokens, expert_idx]
|
| 171 |
+
# 只计算非零值的平均值
|
| 172 |
+
mask = (valid_outputs.sum(dim=-1) != 0).to(valid_outputs.dtype).unsqueeze(-1)
|
| 173 |
if mask.sum() > 0:
|
| 174 |
+
expert_output = (valid_outputs * mask).sum(dim=0) / mask.sum()
|
| 175 |
else:
|
| 176 |
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
|
| 177 |
else:
|
| 178 |
+
# 如果没有找到有效token,使用所有激活了当前专家的token的输出
|
| 179 |
+
if tokens_with_expert.any():
|
| 180 |
+
all_valid_outputs = all_expert_outputs[tokens_with_expert, expert_idx]
|
| 181 |
+
mask = (all_valid_outputs.sum(dim=-1) != 0).to(all_valid_outputs.dtype).unsqueeze(-1)
|
| 182 |
+
if mask.sum() > 0:
|
| 183 |
+
expert_output = (all_valid_outputs * mask).sum(dim=0) / mask.sum()
|
| 184 |
+
else:
|
| 185 |
+
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
|
| 186 |
+
else:
|
| 187 |
+
expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
|
| 188 |
+
|
| 189 |
+
# 根据routing权重加权
|
| 190 |
+
dense_outputs[token_idx] += routing_weights[token_idx, expert_idx] * expert_output
|
| 191 |
+
|
| 192 |
+
return dense_outputs
|
| 193 |
|
| 194 |
|
| 195 |
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
|
|
|
|
| 238 |
def main():
|
| 239 |
config = DenseBackwardOLMoEConfig( # 官方模型参数
|
| 240 |
model_marker="DenseBackward_olmoe_marker",
|
| 241 |
+
)
|
| 242 |
+
# 创建自定义模型实例
|
| 243 |
model = DenseBackwardOLMoEForCausalLM(config)
|
| 244 |
print(type(model))
|
| 245 |
print(type(model.model))
|
| 246 |
print(type(model.model.layers[0]))
|
| 247 |
print(type(model.model.layers[0].mlp))
|
| 248 |
print(type(model.model.layers[0].mlp.experts))
|
| 249 |
+
|
| 250 |
if __name__ == "__main__":
|
| 251 |
main()
|