| license: apache-2.0 | |
| tags: | |
| - generated_from_trainer | |
| datasets: | |
| - xsum | |
| metrics: | |
| - rouge | |
| model-index: | |
| - name: summarization | |
| results: | |
| - task: | |
| name: Sequence-to-sequence Language Modeling | |
| type: text2text-generation | |
| dataset: | |
| name: xsum | |
| type: xsum | |
| args: default | |
| metrics: | |
| - name: Rouge1 | |
| type: rouge | |
| value: 23.9405 | |
| - task: | |
| type: summarization | |
| name: Summarization | |
| dataset: | |
| name: autoevaluate/xsum-sample | |
| type: autoevaluate/xsum-sample | |
| config: autoevaluate--xsum-sample | |
| split: test | |
| metrics: | |
| - name: ROUGE-1 | |
| type: rouge | |
| value: 18.3205 | |
| verified: true | |
| - name: ROUGE-2 | |
| type: rouge | |
| value: 3.0568 | |
| verified: true | |
| - name: ROUGE-L | |
| type: rouge | |
| value: 14.8435 | |
| verified: true | |
| - name: ROUGE-LSUM | |
| type: rouge | |
| value: 14.8142 | |
| verified: true | |
| - name: loss | |
| type: loss | |
| value: 3.0104541778564453 | |
| verified: true | |
| - name: gen_len | |
| type: gen_len | |
| value: 18.05 | |
| verified: true | |
| <!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
| should probably proofread and complete it, then remove this comment. --> | |
| # summarization | |
| This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. | |
| It achieves the following results on the evaluation set: | |
| - Loss: 2.6690 | |
| - Rouge1: 23.9405 | |
| - Rouge2: 5.0879 | |
| - Rougel: 18.4981 | |
| - Rougelsum: 18.5032 | |
| - Gen Len: 18.7376 | |
| ## Model description | |
| More information needed | |
| ## Intended uses & limitations | |
| More information needed | |
| ## Training and evaluation data | |
| More information needed | |
| ## Training procedure | |
| ### Training hyperparameters | |
| The following hyperparameters were used during training: | |
| - learning_rate: 2e-05 | |
| - train_batch_size: 16 | |
| - eval_batch_size: 16 | |
| - seed: 42 | |
| - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
| - lr_scheduler_type: linear | |
| - training_steps: 1000 | |
| - mixed_precision_training: Native AMP | |
| ### Training results | |
| | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
| |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | |
| | 2.9249 | 0.08 | 1000 | 2.6690 | 23.9405 | 5.0879 | 18.4981 | 18.5032 | 18.7376 | | |
| ### Framework versions | |
| - Transformers 4.19.2 | |
| - Pytorch 1.11.0+cu113 | |
| - Datasets 2.2.2 | |
| - Tokenizers 0.12.1 | |