distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9300
  • Accuracy: {'accuracy': 0.892}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.3399 {'accuracy': 0.871}
No log 2.0 250 0.4717 {'accuracy': 0.853}
No log 3.0 375 0.3759 {'accuracy': 0.893}
0.2676 4.0 500 0.3800 {'accuracy': 0.897}
0.2676 5.0 625 0.6089 {'accuracy': 0.892}
0.2676 6.0 750 0.6365 {'accuracy': 0.893}
0.2676 7.0 875 0.7513 {'accuracy': 0.884}
0.0476 8.0 1000 0.7167 {'accuracy': 0.893}
0.0476 9.0 1125 0.7829 {'accuracy': 0.895}
0.0476 10.0 1250 0.8211 {'accuracy': 0.895}
0.0476 11.0 1375 0.8894 {'accuracy': 0.89}
0.0059 12.0 1500 0.9043 {'accuracy': 0.89}
0.0059 13.0 1625 0.9287 {'accuracy': 0.894}
0.0059 14.0 1750 0.9314 {'accuracy': 0.892}
0.0059 15.0 1875 0.9300 {'accuracy': 0.892}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for atrikha/distilbert-base-uncased-lora-text-classification

Adapter
(260)
this model