You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

w2v-bert-2.0-lg-CV-Fleurs-1hrs-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1416
  • Wer: 0.4566
  • Cer: 0.0978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.4287 1.0 33 4.3733 1.0 0.8746
3.5018 2.0 66 3.0412 1.0 0.9993
2.9634 3.0 99 2.8308 1.0 0.9648
2.3326 4.0 132 1.4299 0.9958 0.3733
0.949 5.0 165 0.7168 0.7194 0.1571
0.5686 6.0 198 0.5983 0.5879 0.1301
0.4608 7.0 231 0.5696 0.5459 0.1237
0.3589 8.0 264 0.5918 0.5246 0.1112
0.305 9.0 297 0.6142 0.5282 0.1176
0.2595 10.0 330 0.5571 0.5178 0.1139
0.2392 11.0 363 0.5865 0.4942 0.1079
0.1864 12.0 396 0.5887 0.4890 0.1057
0.1481 13.0 429 0.6205 0.5112 0.1118
0.1286 14.0 462 0.6221 0.4831 0.1072
0.112 15.0 495 0.7048 0.5106 0.1116
0.0939 16.0 528 0.7129 0.4956 0.1075
0.0749 17.0 561 0.7164 0.4872 0.1082
0.0681 18.0 594 0.7782 0.4828 0.1046
0.0582 19.0 627 0.8116 0.4929 0.1069
0.0483 20.0 660 0.8012 0.5072 0.1088
0.0376 21.0 693 0.8372 0.4958 0.1067
0.0354 22.0 726 0.8349 0.4797 0.1051
0.0258 23.0 759 0.9033 0.5013 0.1088
0.0233 24.0 792 0.8219 0.4690 0.1024
0.0181 25.0 825 0.9054 0.4694 0.1017
0.0199 26.0 858 0.8698 0.5092 0.1082
0.0159 27.0 891 0.9403 0.4846 0.1064
0.0142 28.0 924 0.9794 0.4625 0.0997
0.01 29.0 957 0.9501 0.4759 0.1024
0.0084 30.0 990 1.0099 0.4625 0.0993
0.0057 31.0 1023 1.0293 0.4622 0.1002
0.0069 32.0 1056 1.0173 0.4729 0.1022
0.0082 33.0 1089 1.0217 0.4683 0.1005
0.0052 34.0 1122 0.9799 0.4684 0.1032
0.0084 35.0 1155 1.0559 0.4753 0.1045
0.0045 36.0 1188 1.0602 0.4627 0.0998
0.0039 37.0 1221 1.0979 0.4755 0.1024
0.0028 38.0 1254 1.0779 0.4633 0.1007
0.0041 39.0 1287 1.0735 0.4685 0.1009
0.0059 40.0 1320 1.0740 0.4576 0.0990
0.0032 41.0 1353 1.0726 0.4528 0.0976
0.006 42.0 1386 1.1226 0.4667 0.1004
0.0047 43.0 1419 1.0967 0.4556 0.0981
0.0045 44.0 1452 1.0532 0.4616 0.1009
0.0042 45.0 1485 1.0789 0.4570 0.0990
0.0035 46.0 1518 1.1087 0.4530 0.0981
0.0023 47.0 1551 1.1016 0.4601 0.0994
0.002 48.0 1584 1.1111 0.4485 0.0979
0.0025 49.0 1617 1.0998 0.4596 0.1005
0.0064 50.0 1650 1.1135 0.4546 0.0987
0.0028 51.0 1683 1.1165 0.4627 0.1006
0.0062 52.0 1716 1.1230 0.4609 0.1002
0.0093 53.0 1749 1.0876 0.4803 0.1025
0.0045 54.0 1782 1.0904 0.4609 0.0991
0.0017 55.0 1815 1.1188 0.4528 0.0979
0.0018 56.0 1848 1.1259 0.4509 0.0978
0.0038 57.0 1881 1.1149 0.4626 0.1002
0.0025 58.0 1914 1.1349 0.4544 0.0989
0.001 59.0 1947 1.1473 0.4653 0.0994
0.0009 60.0 1980 1.1416 0.4566 0.0978

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for asr-africa/w2v-bert-2.0-lg-CV-Fleurs-1hrs-v1

Finetuned
(247)
this model

Collection including asr-africa/w2v-bert-2.0-lg-CV-Fleurs-1hrs-v1