metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-sw-CV_Fleurs_AMMI_ALFFA-5hrs-v1
results: []
mms-1b-all-sw-CV_Fleurs_AMMI_ALFFA-5hrs-v1
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Wer: 0.2369
- Cer: 0.0801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Val Wer | Val Cer |
---|---|---|---|---|
9.5784 | 1.0 | 183 | 0.9998 | 0.9646 |
1.9211 | 2.0 | 366 | 0.2887 | 0.0983 |
0.6977 | 3.0 | 549 | 0.2641 | 0.0915 |
0.6391 | 4.0 | 732 | 0.2568 | 0.0893 |
0.59 | 5.0 | 915 | 0.2502 | 0.0874 |
0.5654 | 6.0 | 1098 | 0.2489 | 0.0865 |
0.5544 | 7.0 | 1281 | 0.2459 | 0.0853 |
0.5385 | 8.0 | 1464 | 0.2443 | 0.0846 |
0.5256 | 9.0 | 1647 | 0.2442 | 0.0841 |
0.5152 | 10.0 | 1830 | 0.2420 | 0.0837 |
0.5116 | 11.0 | 2013 | 0.2411 | 0.0833 |
0.497 | 12.0 | 2196 | 0.2414 | 0.0829 |
0.4969 | 13.0 | 2379 | 0.2400 | 0.0826 |
0.4887 | 14.0 | 2562 | 0.2396 | 0.0824 |
0.4849 | 15.0 | 2745 | 0.2394 | 0.0820 |
0.473 | 16.0 | 2928 | 0.2396 | 0.0820 |
0.4732 | 17.0 | 3111 | 0.2403 | 0.0819 |
0.4648 | 18.0 | 3294 | 0.2396 | 0.0817 |
0.4608 | 19.0 | 3477 | 0.2397 | 0.0817 |
0.4583 | 20.0 | 3660 | 0.2397 | 0.0815 |
0.4579 | 21.0 | 3843 | 0.2402 | 0.0817 |
0.447 | 22.0 | 4026 | 0.2379 | 0.0813 |
0.4442 | 23.0 | 4209 | 0.2373 | 0.0809 |
0.439 | 24.0 | 4392 | 0.2373 | 0.0809 |
0.4381 | 25.0 | 4575 | 0.2376 | 0.0809 |
0.4386 | 26.0 | 4758 | 0.2377 | 0.0807 |
0.423 | 27.0 | 4941 | 0.2360 | 0.0804 |
0.428 | 28.0 | 5124 | 0.2366 | 0.0803 |
0.425 | 29.0 | 5307 | 0.2368 | 0.0804 |
0.4169 | 30.0 | 5490 | 0.2376 | 0.0803 |
0.4253 | 31.0 | 5673 | 0.2367 | 0.0802 |
0.4173 | 32.0 | 5856 | 0.2371 | 0.0802 |
0.414 | 33.0 | 6039 | 0.2362 | 0.0800 |
0.414 | 34.0 | 6222 | 0.2367 | 0.0803 |
0.4064 | 35.0 | 6405 | 0.2373 | 0.0801 |
0.402 | 36.0 | 6588 | 0.2370 | 0.0802 |
0.4035 | 37.0 | 6771 | 0.2369 | 0.0801 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0