metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_50hr_v2
results: []
W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_50hr_v2
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2946
- Wer: 0.2791
- Cer: 0.0560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.0699 | 1.0 | 1092 | 0.2310 | 0.2610 | 0.0441 |
0.2086 | 2.0 | 2184 | 0.2126 | 0.2397 | 0.0416 |
0.1918 | 3.0 | 3276 | 0.2344 | 0.2636 | 0.0468 |
0.1783 | 4.0 | 4368 | 0.2030 | 0.2516 | 0.0420 |
0.1636 | 5.0 | 5460 | 0.1969 | 0.2334 | 0.0402 |
0.1528 | 6.0 | 6552 | 0.2050 | 0.2247 | 0.0393 |
0.1443 | 7.0 | 7644 | 0.1934 | 0.2304 | 0.0389 |
0.136 | 8.0 | 8736 | 0.1908 | 0.2292 | 0.0396 |
0.1283 | 9.0 | 9828 | 0.1963 | 0.2255 | 0.0388 |
0.1198 | 10.0 | 10920 | 0.1935 | 0.2216 | 0.0380 |
0.1118 | 11.0 | 12012 | 0.2008 | 0.2229 | 0.0379 |
0.1021 | 12.0 | 13104 | 0.1982 | 0.2233 | 0.0392 |
0.0969 | 13.0 | 14196 | 0.2036 | 0.2245 | 0.0389 |
0.0895 | 14.0 | 15288 | 0.2046 | 0.2238 | 0.0389 |
0.0821 | 15.0 | 16380 | 0.2203 | 0.2225 | 0.0386 |
0.0752 | 16.0 | 17472 | 0.2293 | 0.2221 | 0.0387 |
0.0677 | 17.0 | 18564 | 0.2423 | 0.2430 | 0.0419 |
0.0618 | 18.0 | 19656 | 0.2469 | 0.2262 | 0.0386 |
0.0545 | 19.0 | 20748 | 0.2677 | 0.2372 | 0.0398 |
0.0495 | 20.0 | 21840 | 0.2691 | 0.2295 | 0.0393 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1