metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_1hr_v2
results: []
W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_1hr_v2
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4556
- Model Preparation Time: 0.0127
- Wer: 0.3692
- Cer: 0.0718
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
7.2051 | 0.9778 | 22 | 6.1914 | 0.0127 | 1.0 | 0.9176 |
4.1072 | 2.0 | 45 | 3.1571 | 0.0127 | 1.0 | 0.9905 |
3.0778 | 2.9778 | 67 | 2.8928 | 0.0127 | 1.0 | 0.9418 |
2.6835 | 4.0 | 90 | 2.5263 | 0.0127 | 1.0 | 0.7968 |
2.0498 | 4.9778 | 112 | 1.1299 | 0.0127 | 0.9935 | 0.3234 |
0.6781 | 6.0 | 135 | 0.4324 | 0.0127 | 0.5731 | 0.0952 |
0.3809 | 6.9778 | 157 | 0.3307 | 0.0127 | 0.4004 | 0.0667 |
0.2728 | 8.0 | 180 | 0.2900 | 0.0127 | 0.3482 | 0.0571 |
0.2301 | 8.9778 | 202 | 0.2700 | 0.0127 | 0.3382 | 0.0549 |
0.1725 | 10.0 | 225 | 0.2791 | 0.0127 | 0.3510 | 0.0541 |
0.1417 | 10.9778 | 247 | 0.2745 | 0.0127 | 0.3643 | 0.0551 |
0.1158 | 12.0 | 270 | 0.3095 | 0.0127 | 0.3256 | 0.0534 |
0.1125 | 12.9778 | 292 | 0.2983 | 0.0127 | 0.3407 | 0.0555 |
0.0854 | 14.0 | 315 | 0.3183 | 0.0127 | 0.3505 | 0.0540 |
0.078 | 14.9778 | 337 | 0.3576 | 0.0127 | 0.3409 | 0.0549 |
0.0661 | 16.0 | 360 | 0.3444 | 0.0127 | 0.3550 | 0.0567 |
0.0736 | 16.9778 | 382 | 0.3750 | 0.0127 | 0.3570 | 0.0595 |
0.0584 | 18.0 | 405 | 0.3570 | 0.0127 | 0.3738 | 0.0583 |
0.0503 | 18.9778 | 427 | 0.4068 | 0.0127 | 0.3740 | 0.0612 |
0.0498 | 20.0 | 450 | 0.3769 | 0.0127 | 0.3545 | 0.0581 |
0.0549 | 20.9778 | 472 | 0.3819 | 0.0127 | 0.3620 | 0.0574 |
0.049 | 22.0 | 495 | 0.3945 | 0.0127 | 0.3632 | 0.0582 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.2.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1