my_model / README.md
ashdev01's picture
Upload tokenizer
3908708 verified
|
raw
history blame
3.55 kB
metadata
base_model: distilbert/distilroberta-base
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: my_model
    results: []

my_model

This model is a fine-tuned version of distilbert/distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7996

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 199 1.7128
No log 2.0 398 1.4856
1.8719 3.0 597 1.3661
1.8719 4.0 796 1.2638
1.8719 5.0 995 1.1847
1.3663 6.0 1194 1.1849
1.3663 7.0 1393 1.1757
1.2108 8.0 1592 1.1026
1.2108 9.0 1791 1.0826
1.2108 10.0 1990 1.0609
1.1079 11.0 2189 1.0221
1.1079 12.0 2388 1.0199
1.0428 13.0 2587 0.9990
1.0428 14.0 2786 1.0083
1.0428 15.0 2985 0.9905
0.9911 16.0 3184 0.9492
0.9911 17.0 3383 0.9526
0.9391 18.0 3582 0.9219
0.9391 19.0 3781 0.9228
0.9391 20.0 3980 0.9183
0.9078 21.0 4179 0.9276
0.9078 22.0 4378 0.8874
0.8727 23.0 4577 0.8856
0.8727 24.0 4776 0.8899
0.8727 25.0 4975 0.8836
0.8513 26.0 5174 0.8790
0.8513 27.0 5373 0.8835
0.8145 28.0 5572 0.8583
0.8145 29.0 5771 0.8498
0.8145 30.0 5970 0.8530
0.8085 31.0 6169 0.8409
0.8085 32.0 6368 0.8196
0.7783 33.0 6567 0.8311
0.7783 34.0 6766 0.8301
0.7783 35.0 6965 0.8370
0.7639 36.0 7164 0.8321
0.7639 37.0 7363 0.8226
0.757 38.0 7562 0.8361
0.757 39.0 7761 0.8236
0.757 40.0 7960 0.8255
0.7483 41.0 8159 0.8305
0.7483 42.0 8358 0.8057
0.7449 43.0 8557 0.8251
0.7449 44.0 8756 0.8014
0.7449 45.0 8955 0.7996

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1