modernbert-disfluency-optimized

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0126
  • Precision: 0.0827
  • Recall: 0.4119
  • F1: 0.1378
  • Accuracy: 0.2107
  • Artial Word F1: 0.0
  • Artial Word Precision: 0.0
  • Artial Word Recall: 0.0
  • Ause F1: 0.6721
  • Ause Precision: 0.5256
  • Ause Recall: 0.9318
  • Epetition F1: 0.0548
  • Epetition Precision: 0.0350
  • Epetition Recall: 0.1270
  • Evision F1: 0.0079
  • Evision Precision: 0.0042
  • Evision Recall: 0.0833

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 48
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Artial Word F1 Artial Word Precision Artial Word Recall Ause F1 Ause Precision Ause Recall Epetition F1 Epetition Precision Epetition Recall Evision F1 Evision Precision Evision Recall
0.0513 1.0 58 0.0229 0.0192 0.1360 0.0336 0.1402 0.0 0.0 0.0 0.0731 0.0422 0.2721 0.0223 0.0136 0.0619 0.0046 0.0025 0.0357
0.0524 2.0 116 0.0174 0.0391 0.2594 0.0680 0.1631 0.0 0.0 0.0 0.1960 0.1172 0.5986 0.0229 0.0138 0.0670 0.0041 0.0022 0.0357
0.0463 3.0 174 0.0146 0.0501 0.3048 0.0861 0.1647 0.0 0.0 0.0 0.3093 0.1974 0.7143 0.0245 0.0150 0.0670 0.0057 0.0030 0.0536
0.0166 4.0 232 0.0129 0.0593 0.3401 0.1010 0.1874 0.0 0.0 0.0 0.4041 0.2708 0.7959 0.0286 0.0176 0.0773 0.0058 0.0030 0.0536
0.0707 5.0 290 0.0121 0.0651 0.3652 0.1106 0.1938 0.0 0.0 0.0 0.5050 0.3580 0.8571 0.0302 0.0185 0.0825 0.0057 0.0030 0.0536
0.013 6.0 348 0.0115 0.0726 0.3829 0.1221 0.2020 0.0 0.0 0.0 0.5586 0.4068 0.8912 0.0368 0.0230 0.0928 0.0058 0.0030 0.0536
0.032 7.0 406 0.0112 0.0788 0.4055 0.1320 0.1907 0.0 0.0 0.0 0.6279 0.4770 0.9184 0.0434 0.0272 0.1082 0.0096 0.0051 0.0893
0.0293 8.0 464 0.0109 0.0789 0.4081 0.1322 0.2038 0.0 0.0 0.0 0.6492 0.5 0.9252 0.0463 0.0288 0.1186 0.0058 0.0031 0.0536
0.0267 9.0 522 0.0107 0.0785 0.4055 0.1316 0.2049 0.0 0.0 0.0 0.6667 0.5211 0.9252 0.0423 0.0263 0.1082 0.0077 0.0041 0.0714
0.0244 10.0 580 0.0106 0.0801 0.4106 0.1340 0.2026 0.0 0.0 0.0 0.685 0.5415 0.9320 0.0448 0.0279 0.1134 0.0076 0.0040 0.0714
0.0104 11.0 638 0.0105 0.0818 0.4131 0.1366 0.2080 0.0 0.0 0.0 0.6954 0.5547 0.9320 0.0477 0.0298 0.1186 0.0077 0.0041 0.0714
0.0352 12.0 696 0.0104 0.0836 0.4156 0.1392 0.2051 0.0 0.0 0.0 0.7023 0.5610 0.9388 0.0487 0.0306 0.1186 0.0078 0.0041 0.0714
0.0216 13.0 754 0.0104 0.0827 0.4106 0.1376 0.2032 0.0 0.0 0.0 0.7095 0.5702 0.9388 0.0443 0.0279 0.1082 0.0078 0.0041 0.0714
0.0211 14.0 812 0.0104 0.0828 0.4106 0.1378 0.2028 0.0 0.0 0.0 0.7095 0.5702 0.9388 0.0443 0.0279 0.1082 0.0078 0.0041 0.0714
0.0208 15.0 870 0.0104 0.0828 0.4106 0.1378 0.2030 0.0 0.0 0.0 0.7095 0.5702 0.9388 0.0444 0.0279 0.1082 0.0078 0.0041 0.0714

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
396M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for arielcerdap/modernbert-disfluency-optimized

Finetuned
(85)
this model