modernbert-binary-disfluency
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0042
- Accuracy: 0.9256
- Precision: 0.6628
- Recall: 0.8915
- F1: 0.7603
- Specificity: 0.9308
- True Positives: 682
- False Positives: 347
- True Negatives: 4665
- False Negatives: 83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 96
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Specificity | True Positives | False Positives | True Negatives | False Negatives |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0036 | 1.7241 | 100 | 0.0031 | 0.6845 | 0.2814 | 0.9494 | 0.4342 | 0.6458 | 582 | 1486 | 2709 | 31 |
0.002 | 3.4483 | 200 | 0.0021 | 0.8184 | 0.4090 | 0.9527 | 0.5723 | 0.7988 | 584 | 844 | 3351 | 29 |
0.0012 | 5.1724 | 300 | 0.0019 | 0.8902 | 0.5398 | 0.9396 | 0.6857 | 0.8830 | 576 | 491 | 3704 | 37 |
0.0008 | 6.8966 | 400 | 0.0024 | 0.9289 | 0.6581 | 0.9201 | 0.7673 | 0.9302 | 564 | 293 | 3902 | 49 |
0.0005 | 8.6207 | 500 | 0.0029 | 0.9349 | 0.6829 | 0.9135 | 0.7816 | 0.9380 | 560 | 260 | 3935 | 53 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for arielcerdap/modernbert-binary-disfluency
Base model
answerdotai/ModernBERT-large