modernbert-binary-disfluency

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0042
  • Accuracy: 0.9256
  • Precision: 0.6628
  • Recall: 0.8915
  • F1: 0.7603
  • Specificity: 0.9308
  • True Positives: 682
  • False Positives: 347
  • True Negatives: 4665
  • False Negatives: 83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 48
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Specificity True Positives False Positives True Negatives False Negatives
0.0036 1.7241 100 0.0031 0.6845 0.2814 0.9494 0.4342 0.6458 582 1486 2709 31
0.002 3.4483 200 0.0021 0.8184 0.4090 0.9527 0.5723 0.7988 584 844 3351 29
0.0012 5.1724 300 0.0019 0.8902 0.5398 0.9396 0.6857 0.8830 576 491 3704 37
0.0008 6.8966 400 0.0024 0.9289 0.6581 0.9201 0.7673 0.9302 564 293 3902 49
0.0005 8.6207 500 0.0029 0.9349 0.6829 0.9135 0.7816 0.9380 560 260 3935 53

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
396M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for arielcerdap/modernbert-binary-disfluency

Finetuned
(86)
this model