ardaspear commited on
Commit
fb0323a
·
verified ·
1 Parent(s): b354500

End of training

Browse files
Files changed (2) hide show
  1. README.md +177 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: fxmarty/tiny-llama-fast-tokenizer
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 279be00c-0c7b-4757-81d7-807671f84b85
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: fxmarty/tiny-llama-fast-tokenizer
22
+ bf16: true
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - de8d19745534077b_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/de8d19745534077b_train_data.json
31
+ type:
32
+ field_instruction: ca_topic
33
+ field_output: article
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ device_map: auto
41
+ do_eval: true
42
+ early_stopping_patience: 5
43
+ eval_batch_size: 4
44
+ eval_max_new_tokens: 128
45
+ eval_steps: 50
46
+ eval_table_size: null
47
+ evals_per_epoch: null
48
+ flash_attention: true
49
+ fp16: false
50
+ fsdp: null
51
+ fsdp_config: null
52
+ gradient_accumulation_steps: 4
53
+ gradient_checkpointing: true
54
+ group_by_length: true
55
+ hub_model_id: ardaspear/279be00c-0c7b-4757-81d7-807671f84b85
56
+ hub_repo: null
57
+ hub_strategy: checkpoint
58
+ hub_token: null
59
+ learning_rate: 0.0002
60
+ load_in_4bit: false
61
+ load_in_8bit: false
62
+ local_rank: null
63
+ logging_steps: 10
64
+ lora_alpha: 128
65
+ lora_dropout: 0.3
66
+ lora_fan_in_fan_out: null
67
+ lora_model_dir: null
68
+ lora_modules_to_save:
69
+ - lm_head
70
+ lora_r: 64
71
+ lora_target_linear: true
72
+ loraplus_lr_ratio: 8
73
+ lr_scheduler: cosine
74
+ max_grad_norm: 1.0
75
+ max_memory:
76
+ 0: 75GB
77
+ max_steps: 600
78
+ micro_batch_size: 8
79
+ mlflow_experiment_name: /tmp/de8d19745534077b_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 3
82
+ optim_args:
83
+ adam_beta1: 0.9
84
+ adam_beta2: 0.95
85
+ adam_epsilon: 1.0e-05
86
+ optimizer: adamw_bnb_8bit
87
+ output_dir: miner_id_24
88
+ pad_to_sequence_len: true
89
+ peft_use_rslora: true
90
+ resume_from_checkpoint: null
91
+ s2_attention: null
92
+ sample_packing: false
93
+ save_steps: 150
94
+ saves_per_epoch: null
95
+ sequence_len: 1024
96
+ special_tokens:
97
+ pad_token: </s>
98
+ strict: false
99
+ tf32: true
100
+ tokenizer_type: AutoTokenizer
101
+ train_on_inputs: false
102
+ trust_remote_code: true
103
+ val_set_size: 0.05
104
+ wandb_entity: techspear-hub
105
+ wandb_mode: online
106
+ wandb_name: b901d79f-9b0d-4b1f-b4d1-1b4dbd612e65
107
+ wandb_project: Gradients-On-Five
108
+ wandb_run: your_name
109
+ wandb_runid: b901d79f-9b0d-4b1f-b4d1-1b4dbd612e65
110
+ warmup_steps: 10
111
+ weight_decay: 0.01
112
+ xformers_attention: null
113
+
114
+ ```
115
+
116
+ </details><br>
117
+
118
+ # 279be00c-0c7b-4757-81d7-807671f84b85
119
+
120
+ This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset.
121
+ It achieves the following results on the evaluation set:
122
+ - Loss: 9.2310
123
+
124
+ ## Model description
125
+
126
+ More information needed
127
+
128
+ ## Intended uses & limitations
129
+
130
+ More information needed
131
+
132
+ ## Training and evaluation data
133
+
134
+ More information needed
135
+
136
+ ## Training procedure
137
+
138
+ ### Training hyperparameters
139
+
140
+ The following hyperparameters were used during training:
141
+ - learning_rate: 0.0002
142
+ - train_batch_size: 8
143
+ - eval_batch_size: 4
144
+ - seed: 42
145
+ - gradient_accumulation_steps: 4
146
+ - total_train_batch_size: 32
147
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
148
+ - lr_scheduler_type: cosine
149
+ - lr_scheduler_warmup_steps: 10
150
+ - training_steps: 600
151
+
152
+ ### Training results
153
+
154
+ | Training Loss | Epoch | Step | Validation Loss |
155
+ |:-------------:|:------:|:----:|:---------------:|
156
+ | No log | 0.0012 | 1 | 10.3792 |
157
+ | 10.1577 | 0.0588 | 50 | 10.1284 |
158
+ | 9.912 | 0.1177 | 100 | 9.8863 |
159
+ | 9.6954 | 0.1765 | 150 | 9.6638 |
160
+ | 9.4987 | 0.2354 | 200 | 9.4829 |
161
+ | 9.3916 | 0.2942 | 250 | 9.3790 |
162
+ | 9.2735 | 0.3530 | 300 | 9.2733 |
163
+ | 9.2363 | 0.4119 | 350 | 9.2410 |
164
+ | 9.2265 | 0.4707 | 400 | 9.2328 |
165
+ | 9.2234 | 0.5296 | 450 | 9.2314 |
166
+ | 9.2272 | 0.5884 | 500 | 9.2309 |
167
+ | 9.2246 | 0.6472 | 550 | 9.2309 |
168
+ | 9.2266 | 0.7061 | 600 | 9.2310 |
169
+
170
+
171
+ ### Framework versions
172
+
173
+ - PEFT 0.13.2
174
+ - Transformers 4.46.0
175
+ - Pytorch 2.5.0+cu124
176
+ - Datasets 3.0.1
177
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:512b934e3508a16918c8d2b01cb475256d4b5cf245e3ce9992277ea081d789fe
3
+ size 1222917