See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- de8d19745534077b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/de8d19745534077b_train_data.json
type:
field_instruction: ca_topic
field_output: article
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: ardaspear/279be00c-0c7b-4757-81d7-807671f84b85
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- lm_head
lora_r: 64
lora_target_linear: true
loraplus_lr_ratio: 8
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/de8d19745534077b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
peft_use_rslora: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: b901d79f-9b0d-4b1f-b4d1-1b4dbd612e65
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: b901d79f-9b0d-4b1f-b4d1-1b4dbd612e65
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
279be00c-0c7b-4757-81d7-807671f84b85
This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.2310
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0012 | 1 | 10.3792 |
10.1577 | 0.0588 | 50 | 10.1284 |
9.912 | 0.1177 | 100 | 9.8863 |
9.6954 | 0.1765 | 150 | 9.6638 |
9.4987 | 0.2354 | 200 | 9.4829 |
9.3916 | 0.2942 | 250 | 9.3790 |
9.2735 | 0.3530 | 300 | 9.2733 |
9.2363 | 0.4119 | 350 | 9.2410 |
9.2265 | 0.4707 | 400 | 9.2328 |
9.2234 | 0.5296 | 450 | 9.2314 |
9.2272 | 0.5884 | 500 | 9.2309 |
9.2246 | 0.6472 | 550 | 9.2309 |
9.2266 | 0.7061 | 600 | 9.2310 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for ardaspear/279be00c-0c7b-4757-81d7-807671f84b85
Base model
fxmarty/tiny-llama-fast-tokenizer