|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- BipedalWalker-v3 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: TQC |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 332.83 +/- 0.42 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: BipedalWalker-v3 |
|
type: BipedalWalker-v3 |
|
--- |
|
|
|
# **TQC** Agent playing **BipedalWalker-v3** |
|
This is a trained model of a **TQC** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
|
|
```python |
|
from huggingface_sb3 import load_from_hub |
|
from sb3_contrib import TQC |
|
from stable_baselines3.common.env_util import make_vec_env |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
# Download checkpoint |
|
checkpoint = load_from_hub("araffin/tqc-BipedalWalker-v3", "tqc-BipedalWalker-v3.zip") |
|
# Load the model |
|
model = TQC.load(checkpoint) |
|
|
|
env = make_vec_env("BipedalWalker-v3", n_envs=1) |
|
|
|
# Evaluate |
|
print("Evaluating model") |
|
mean_reward, std_reward = evaluate_policy( |
|
model, |
|
env, |
|
n_eval_episodes=20, |
|
deterministic=True, |
|
) |
|
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") |
|
|
|
# Start a new episode |
|
obs = env.reset() |
|
|
|
try: |
|
while True: |
|
action, _states = model.predict(obs, deterministic=True) |
|
obs, rewards, dones, info = env.step(action) |
|
env.render() |
|
except KeyboardInterrupt: |
|
pass |
|
``` |
|
|
|
## Training code (with SB3) |
|
|
|
```python |
|
from sb3_contrib import TQC |
|
from stable_baselines3.common.env_util import make_vec_env |
|
from stable_baselines3.common.callbacks import EvalCallback |
|
|
|
# Create the environment |
|
env_id = "BipedalWalker-v3" |
|
n_envs = 2 |
|
env = make_vec_env(env_id, n_envs=n_envs) |
|
|
|
# Create the evaluation envs |
|
eval_envs = make_vec_env(env_id, n_envs=5) |
|
|
|
# Adjust evaluation interval depending on the number of envs |
|
eval_freq = int(1e5) |
|
eval_freq = max(eval_freq // n_envs, 1) |
|
|
|
# Create evaluation callback to save best model |
|
# and monitor agent performance |
|
eval_callback = EvalCallback( |
|
eval_envs, |
|
best_model_save_path="./logs/", |
|
eval_freq=eval_freq, |
|
n_eval_episodes=10, |
|
) |
|
|
|
# Instantiate the agent |
|
# Hyperparameters from https://github.com/DLR-RM/rl-baselines3-zoo |
|
model = TQC( |
|
"MlpPolicy", |
|
env, |
|
learning_starts=10000, |
|
batch_size=256, |
|
buffer_size=300000, |
|
learning_rate=7.3e-4, |
|
# gSDE is from https://proceedings.mlr.press/v164/raffin22a.html |
|
use_sde=True, |
|
train_freq=8, |
|
gradient_steps=8, |
|
gamma=0.98, |
|
tau=0.02, |
|
policy_kwargs=dict(log_std_init=-3, net_arch=[400, 300]), |
|
verbose=1, |
|
) |
|
|
|
# Train the agent (you can kill it before using ctrl+c) |
|
try: |
|
model.learn(total_timesteps=int(5e5), callback=eval_callback, log_interval=10) |
|
except KeyboardInterrupt: |
|
pass |
|
``` |
|
|