|
--- |
|
library_name: transformers |
|
language: |
|
- hi |
|
base_model: ar5entum/bart_eng_hin_mt |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart_eng_hin_mt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart_eng_hin_mt |
|
|
|
This model is a fine-tuned version of [danasone/bart-small-ru-en](https://huggingface.co/danasone/bart-small-ru-en) on [cfilt/iitb-english-hindi](https://huggingface.co/datasets/cfilt/iitb-english-hindi) dataset. |
|
It achieves the following results on the evaluation set: |
|
- eval_loss: 0.5147 |
|
- eval_model_preparation_time: 0.0051 |
|
- eval_bleu: 11.8141 |
|
- eval_gen_len: 122.6932 |
|
- eval_runtime: 3.6543 |
|
- eval_samples_per_second: 142.3 |
|
- eval_steps_per_second: 1.642 |
|
- step: 0 |
|
|
|
## Model description |
|
|
|
Machine Translation model from English to Hindi on bart small model. |
|
|
|
## Inference and Evaluation |
|
|
|
```python |
|
import torch |
|
import evaluate |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
class BartSmall(): |
|
def __init__(self, model_path = 'ar5entum/bart_eng_hin_mt', device = None): |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path) |
|
if not device: |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.device = device |
|
self.model.to(device) |
|
|
|
def predict(self, input_text): |
|
inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device) |
|
pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True) |
|
prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True) |
|
return prediction |
|
|
|
def predict_batch(self, input_texts, batch_size=32): |
|
all_predictions = [] |
|
for i in range(0, len(input_texts), batch_size): |
|
batch_texts = input_texts[i:i+batch_size] |
|
inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512, |
|
truncation=True, padding=True).to(self.device) |
|
|
|
with torch.no_grad(): |
|
pred_ids = self.model.generate(inputs.input_ids, |
|
max_length=512, |
|
num_beams=4, |
|
early_stopping=True) |
|
|
|
predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True) |
|
all_predictions.extend(predictions) |
|
|
|
return all_predictions |
|
|
|
model = BartSmall(device='cuda') |
|
|
|
input_texts = [ |
|
"This is a repayable amount.", |
|
"Watch this video to find out.", |
|
"He was a father of two daughters and a son." |
|
] |
|
ground_truths = [ |
|
"यह शोध्य रकम है।", |
|
"जानने के लिए देखें ये वीडियो.", |
|
"वह दो बेटियों व एक बेटे का पिता था।" |
|
] |
|
import time |
|
start = time.time() |
|
|
|
predictions = model.predict_batch(input_texts, batch_size=len(input_texts)) |
|
end = time.time() |
|
print("TIME: ", end-start) |
|
for i in range(len(input_texts)): |
|
print("‾‾‾‾‾‾‾‾‾‾‾‾") |
|
print("Input text:\t", input_texts[i]) |
|
print("Prediction:\t", predictions[i]) |
|
print("Ground Truth:\t", ground_truths[i]) |
|
bleu = evaluate.load("bleu") |
|
results = bleu.compute(predictions=predictions, references=ground_truths) |
|
print(results) |
|
|
|
# TIME: 3.65848970413208 |
|
# ‾‾‾‾‾‾‾‾‾‾‾‾ |
|
# Input text: This is a repayable amount. |
|
# Prediction: यह एक चुकौती राशि है। |
|
# Ground Truth: यह शोध्य रकम है। |
|
# ‾‾‾‾‾‾‾‾‾‾‾‾ |
|
# Input text: Watch this video to find out. |
|
# Prediction: इस वीडियो को बाहर ढूंढने के लिए इस वीडियो को देख� |
|
# Ground Truth: जानने के लिए देखें ये वीडियो. |
|
# ‾‾‾‾‾‾‾‾‾‾‾‾ |
|
# Input text: He was a father of two daughters and a son. |
|
# Prediction: वह दो बेटियों और एक पुत्र के पिता थे। |
|
# Ground Truth: वह दो बेटियों व एक बेटे का पिता था। |
|
# {'bleu': 0.0, 'precisions': [0.4, 0.13636363636363635, 0.05263157894736842, 0.0], 'brevity_penalty': 1.0, 'length_ratio': 1.25, 'translation_length': 25, 'reference_length': 20} |
|
``` |
|
## Training Procedure |
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 22 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 88 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|