apriliantono commited on
Commit
903d312
·
verified ·
1 Parent(s): d73b8ab

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlmv3-funsd
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlmv3-funsd
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.5869
22
+ - Answer: {'precision': 0.06117908787541713, 'recall': 0.13597033374536466, 'f1': 0.08438818565400844, 'number': 809}
23
+ - Header: {'precision': 0.015789473684210527, 'recall': 0.025210084033613446, 'f1': 0.01941747572815534, 'number': 119}
24
+ - Question: {'precision': 0.1918819188191882, 'recall': 0.39061032863849765, 'f1': 0.257346118156511, 'number': 1065}
25
+ - Overall Precision: 0.1273
26
+ - Overall Recall: 0.2654
27
+ - Overall F1: 0.1721
28
+ - Overall Accuracy: 0.4198
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.9534 | 1.0 | 10 | 1.7563 | {'precision': 0.021798365122615803, 'recall': 0.009888751545117428, 'f1': 0.013605442176870746, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.029567053854276663, 'recall': 0.05258215962441314, 'f1': 0.037850625211220006, 'number': 1065} | 0.0283 | 0.0321 | 0.0301 | 0.2212 |
61
+ | 1.7529 | 2.0 | 20 | 1.6621 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.28431372549019607, 'recall': 0.027230046948356807, 'f1': 0.049700085689802914, 'number': 1065} | 0.0769 | 0.0146 | 0.0245 | 0.3060 |
62
+ | 1.6557 | 3.0 | 30 | 1.6846 | {'precision': 0.025611175785797437, 'recall': 0.054388133498145856, 'f1': 0.034823901859912944, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.12563044475011462, 'recall': 0.25727699530516435, 'f1': 0.16882316697473815, 'number': 1065} | 0.0816 | 0.1596 | 0.1079 | 0.3209 |
63
+ | 1.5482 | 4.0 | 40 | 1.6706 | {'precision': 0.03781297904956566, 'recall': 0.09147095179233622, 'f1': 0.05350686912509039, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1303972366148532, 'recall': 0.28356807511737087, 'f1': 0.17864537119195506, 'number': 1065} | 0.0880 | 0.1887 | 0.1200 | 0.3287 |
64
+ | 1.4535 | 5.0 | 50 | 1.6188 | {'precision': 0.035333707234997194, 'recall': 0.07787391841779975, 'f1': 0.04861111111111111, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16204690831556504, 'recall': 0.28544600938967135, 'f1': 0.20673240394423667, 'number': 1065} | 0.0988 | 0.1841 | 0.1286 | 0.3580 |
65
+ | 1.3517 | 6.0 | 60 | 1.5478 | {'precision': 0.04584221748400853, 'recall': 0.10630407911001236, 'f1': 0.06405959031657356, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22127329192546583, 'recall': 0.2676056338028169, 'f1': 0.24224394390140241, 'number': 1065} | 0.1147 | 0.1862 | 0.1420 | 0.4143 |
66
+ | 1.2494 | 7.0 | 70 | 1.5328 | {'precision': 0.049443757725587144, 'recall': 0.09888751545117429, 'f1': 0.06592501030078285, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16467780429594273, 'recall': 0.323943661971831, 'f1': 0.21835443037974686, 'number': 1065} | 0.1114 | 0.2132 | 0.1463 | 0.4101 |
67
+ | 1.1759 | 8.0 | 80 | 1.5335 | {'precision': 0.051237766263673, 'recall': 0.1100123609394314, 'f1': 0.06991358994501179, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1746031746031746, 'recall': 0.3408450704225352, 'f1': 0.2309160305343511, 'number': 1065} | 0.1157 | 0.2268 | 0.1532 | 0.4102 |
68
+ | 1.1089 | 9.0 | 90 | 1.5206 | {'precision': 0.055843408175014396, 'recall': 0.11990111248454882, 'f1': 0.07619795758051845, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18374558303886926, 'recall': 0.34178403755868547, 'f1': 0.23900196979645438, 'number': 1065} | 0.1181 | 0.2313 | 0.1563 | 0.4231 |
69
+ | 1.0817 | 10.0 | 100 | 1.5927 | {'precision': 0.05695830886670581, 'recall': 0.11990111248454882, 'f1': 0.07722929936305732, 'number': 809} | {'precision': 0.006993006993006993, 'recall': 0.008403361344537815, 'f1': 0.007633587786259542, 'number': 119} | {'precision': 0.19786396852164137, 'recall': 0.3305164319248826, 'f1': 0.24753867791842474, 'number': 1065} | 0.1241 | 0.2258 | 0.1602 | 0.4152 |
70
+ | 1.025 | 11.0 | 110 | 1.5822 | {'precision': 0.058394160583941604, 'recall': 0.12855377008652658, 'f1': 0.08030888030888031, 'number': 809} | {'precision': 0.005952380952380952, 'recall': 0.008403361344537815, 'f1': 0.006968641114982578, 'number': 119} | {'precision': 0.20356943669827104, 'recall': 0.3427230046948357, 'f1': 0.2554233729881036, 'number': 1065} | 0.1256 | 0.2358 | 0.1639 | 0.4192 |
71
+ | 1.0025 | 12.0 | 120 | 1.5577 | {'precision': 0.056910569105691054, 'recall': 0.1211372064276885, 'f1': 0.07743974713551956, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.19216589861751152, 'recall': 0.39154929577464787, 'f1': 0.2578052550231839, 'number': 1065} | 0.1269 | 0.2584 | 0.1702 | 0.4225 |
72
+ | 0.9791 | 13.0 | 130 | 1.5920 | {'precision': 0.0602655771195097, 'recall': 0.14585908529048208, 'f1': 0.08529092880375859, 'number': 809} | {'precision': 0.015306122448979591, 'recall': 0.025210084033613446, 'f1': 0.01904761904761905, 'number': 119} | {'precision': 0.19343945972021226, 'recall': 0.37652582159624415, 'f1': 0.2555768005098789, 'number': 1065} | 0.1235 | 0.2619 | 0.1678 | 0.4155 |
73
+ | 0.9566 | 14.0 | 140 | 1.5777 | {'precision': 0.06111111111111111, 'recall': 0.13597033374536466, 'f1': 0.0843234955921809, 'number': 809} | {'precision': 0.016483516483516484, 'recall': 0.025210084033613446, 'f1': 0.019933554817275746, 'number': 119} | {'precision': 0.19855072463768117, 'recall': 0.38591549295774646, 'f1': 0.26220095693779905, 'number': 1065} | 0.1293 | 0.2629 | 0.1734 | 0.4223 |
74
+ | 0.9369 | 15.0 | 150 | 1.5869 | {'precision': 0.06117908787541713, 'recall': 0.13597033374536466, 'f1': 0.08438818565400844, 'number': 809} | {'precision': 0.015789473684210527, 'recall': 0.025210084033613446, 'f1': 0.01941747572815534, 'number': 119} | {'precision': 0.1918819188191882, 'recall': 0.39061032863849765, 'f1': 0.257346118156511, 'number': 1065} | 0.1273 | 0.2654 | 0.1721 | 0.4198 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.48.2
80
+ - Pytorch 2.5.1+cu124
81
+ - Datasets 3.2.0
82
+ - Tokenizers 0.21.0
logs/events.out.tfevents.1739416639.2a032f1c9f35.986.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:203805e366713f4385e652b105ca0bfc6029edebbe38ed76a3f08816643fa9d2
3
- size 13388
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d10b8e56cc0e8ec9ae581226fa5199a46bf2b4783deb3b0f39ab15490af8e55
3
+ size 16589
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0ce0d212ce7833d6a7305711bf02102fac30d7b238ee411d43a33882a5e8ac17
3
  size 511211780
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d76c7e888d7f0df928b51c57aae4ab9add5fb2d4e380f1274824a6539e6b86
3
  size 511211780
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "max_length": 512,
59
+ "model_max_length": 512,
60
+ "never_split": null,
61
+ "only_label_first_subword": true,
62
+ "pad_to_multiple_of": null,
63
+ "pad_token": "[PAD]",
64
+ "pad_token_box": [
65
+ 0,
66
+ 0,
67
+ 0,
68
+ 0
69
+ ],
70
+ "pad_token_label": -100,
71
+ "pad_token_type_id": 0,
72
+ "padding_side": "right",
73
+ "processor_class": "LayoutLMv2Processor",
74
+ "sep_token": "[SEP]",
75
+ "sep_token_box": [
76
+ 1000,
77
+ 1000,
78
+ 1000,
79
+ 1000
80
+ ],
81
+ "stride": 0,
82
+ "strip_accents": null,
83
+ "tokenize_chinese_chars": true,
84
+ "tokenizer_class": "LayoutLMv2Tokenizer",
85
+ "truncation_side": "right",
86
+ "truncation_strategy": "longest_first",
87
+ "unk_token": "[UNK]"
88
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff