layoutlmv3-funsd

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5869
  • Answer: {'precision': 0.06117908787541713, 'recall': 0.13597033374536466, 'f1': 0.08438818565400844, 'number': 809}
  • Header: {'precision': 0.015789473684210527, 'recall': 0.025210084033613446, 'f1': 0.01941747572815534, 'number': 119}
  • Question: {'precision': 0.1918819188191882, 'recall': 0.39061032863849765, 'f1': 0.257346118156511, 'number': 1065}
  • Overall Precision: 0.1273
  • Overall Recall: 0.2654
  • Overall F1: 0.1721
  • Overall Accuracy: 0.4198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.9534 1.0 10 1.7563 {'precision': 0.021798365122615803, 'recall': 0.009888751545117428, 'f1': 0.013605442176870746, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.029567053854276663, 'recall': 0.05258215962441314, 'f1': 0.037850625211220006, 'number': 1065} 0.0283 0.0321 0.0301 0.2212
1.7529 2.0 20 1.6621 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.28431372549019607, 'recall': 0.027230046948356807, 'f1': 0.049700085689802914, 'number': 1065} 0.0769 0.0146 0.0245 0.3060
1.6557 3.0 30 1.6846 {'precision': 0.025611175785797437, 'recall': 0.054388133498145856, 'f1': 0.034823901859912944, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.12563044475011462, 'recall': 0.25727699530516435, 'f1': 0.16882316697473815, 'number': 1065} 0.0816 0.1596 0.1079 0.3209
1.5482 4.0 40 1.6706 {'precision': 0.03781297904956566, 'recall': 0.09147095179233622, 'f1': 0.05350686912509039, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1303972366148532, 'recall': 0.28356807511737087, 'f1': 0.17864537119195506, 'number': 1065} 0.0880 0.1887 0.1200 0.3287
1.4535 5.0 50 1.6188 {'precision': 0.035333707234997194, 'recall': 0.07787391841779975, 'f1': 0.04861111111111111, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.16204690831556504, 'recall': 0.28544600938967135, 'f1': 0.20673240394423667, 'number': 1065} 0.0988 0.1841 0.1286 0.3580
1.3517 6.0 60 1.5478 {'precision': 0.04584221748400853, 'recall': 0.10630407911001236, 'f1': 0.06405959031657356, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22127329192546583, 'recall': 0.2676056338028169, 'f1': 0.24224394390140241, 'number': 1065} 0.1147 0.1862 0.1420 0.4143
1.2494 7.0 70 1.5328 {'precision': 0.049443757725587144, 'recall': 0.09888751545117429, 'f1': 0.06592501030078285, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.16467780429594273, 'recall': 0.323943661971831, 'f1': 0.21835443037974686, 'number': 1065} 0.1114 0.2132 0.1463 0.4101
1.1759 8.0 80 1.5335 {'precision': 0.051237766263673, 'recall': 0.1100123609394314, 'f1': 0.06991358994501179, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.1746031746031746, 'recall': 0.3408450704225352, 'f1': 0.2309160305343511, 'number': 1065} 0.1157 0.2268 0.1532 0.4102
1.1089 9.0 90 1.5206 {'precision': 0.055843408175014396, 'recall': 0.11990111248454882, 'f1': 0.07619795758051845, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.18374558303886926, 'recall': 0.34178403755868547, 'f1': 0.23900196979645438, 'number': 1065} 0.1181 0.2313 0.1563 0.4231
1.0817 10.0 100 1.5927 {'precision': 0.05695830886670581, 'recall': 0.11990111248454882, 'f1': 0.07722929936305732, 'number': 809} {'precision': 0.006993006993006993, 'recall': 0.008403361344537815, 'f1': 0.007633587786259542, 'number': 119} {'precision': 0.19786396852164137, 'recall': 0.3305164319248826, 'f1': 0.24753867791842474, 'number': 1065} 0.1241 0.2258 0.1602 0.4152
1.025 11.0 110 1.5822 {'precision': 0.058394160583941604, 'recall': 0.12855377008652658, 'f1': 0.08030888030888031, 'number': 809} {'precision': 0.005952380952380952, 'recall': 0.008403361344537815, 'f1': 0.006968641114982578, 'number': 119} {'precision': 0.20356943669827104, 'recall': 0.3427230046948357, 'f1': 0.2554233729881036, 'number': 1065} 0.1256 0.2358 0.1639 0.4192
1.0025 12.0 120 1.5577 {'precision': 0.056910569105691054, 'recall': 0.1211372064276885, 'f1': 0.07743974713551956, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.19216589861751152, 'recall': 0.39154929577464787, 'f1': 0.2578052550231839, 'number': 1065} 0.1269 0.2584 0.1702 0.4225
0.9791 13.0 130 1.5920 {'precision': 0.0602655771195097, 'recall': 0.14585908529048208, 'f1': 0.08529092880375859, 'number': 809} {'precision': 0.015306122448979591, 'recall': 0.025210084033613446, 'f1': 0.01904761904761905, 'number': 119} {'precision': 0.19343945972021226, 'recall': 0.37652582159624415, 'f1': 0.2555768005098789, 'number': 1065} 0.1235 0.2619 0.1678 0.4155
0.9566 14.0 140 1.5777 {'precision': 0.06111111111111111, 'recall': 0.13597033374536466, 'f1': 0.0843234955921809, 'number': 809} {'precision': 0.016483516483516484, 'recall': 0.025210084033613446, 'f1': 0.019933554817275746, 'number': 119} {'precision': 0.19855072463768117, 'recall': 0.38591549295774646, 'f1': 0.26220095693779905, 'number': 1065} 0.1293 0.2629 0.1734 0.4223
0.9369 15.0 150 1.5869 {'precision': 0.06117908787541713, 'recall': 0.13597033374536466, 'f1': 0.08438818565400844, 'number': 809} {'precision': 0.015789473684210527, 'recall': 0.025210084033613446, 'f1': 0.01941747572815534, 'number': 119} {'precision': 0.1918819188191882, 'recall': 0.39061032863849765, 'f1': 0.257346118156511, 'number': 1065} 0.1273 0.2654 0.1721 0.4198

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
22
Safetensors
Model size
128M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for apriliantono/layoutlmv3-funsd

Finetuned
(241)
this model