DiffuCoder-7B-Base / README.md
yizheapple's picture
Update README.md (#2)
9ad0bdc verified
---
license: unknown
base_model:
- Qwen/Qwen2.5-Coder-7B
tags:
- code
- text-diffusion-model
- diffusion large language model
---
### DiffuCoder-7B-Base
The DiffuCoder-7B-Base model is our foundational masked diffusion LLM for code generation.
- Training recipe: Using [DiffuLLaMA](https://github.com/HKUNLP/DiffuLLaMA)'s adaptation approach, trained on a large corpus of code: with Stage 1 65B tokens and Stage 2 65B tokens.
- Benchmarks: Strong baseline performance on HumanEval, MBPP and BigCodeBench.
#### More details and usage examples:
- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639)
- GitHub: https://github.com/apple/ml-diffucoder
```
import torch
from transformers import AutoModel, AutoTokenizer
model_path = "apple/DiffuCoder-7B-Base"
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to("cuda").eval()
prompt = """
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
\"\"\"
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
\"\"\"
"""
TOKEN_PER_STEP = 1 # diffusion timesteps * TOKEN_PER_STEP = total new tokens
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device="cuda")
attention_mask = inputs.attention_mask.to(device="cuda")
output = model.diffusion_generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=256,
output_history=True,
return_dict_in_generate=True,
steps=256//TOKEN_PER_STEP,
temperature=0.2,
top_p=0.95,
alg="entropy",
alg_temp=0.,
)
generations = [
tokenizer.decode(g[len(p) :].tolist())
for p, g in zip(input_ids, output.sequences)
]
print(generations[0].split(tokenizer.eos_token)[0])
```
#### Acknowledgement
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.