|
--- |
|
library_name: peft |
|
base_model: openai/whisper-large-v2 |
|
--- |
|
|
|
Use language="Georgian" for inference. |
|
|
|
# Inference |
|
```Python |
|
import torch |
|
import gradio as gr |
|
from transformers import ( |
|
AutomaticSpeechRecognitionPipeline, |
|
WhisperForConditionalGeneration, |
|
WhisperTokenizer, |
|
WhisperProcessor, |
|
) |
|
from peft import PeftModel, PeftConfig |
|
from pytube import YouTube |
|
|
|
peft_model_id = "anzorq/openai-whisper-large-v2-LORA-colab" |
|
# peft_model_id = "/content/whisper_large_kbd_lora/checkpoint-64" |
|
language = "Georgian" |
|
task = "transcribe" |
|
peft_config = PeftConfig.from_pretrained(peft_model_id) |
|
model = WhisperForConditionalGeneration.from_pretrained( |
|
peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" |
|
) |
|
|
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) |
|
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) |
|
feature_extractor = processor.feature_extractor |
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) |
|
pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
def transcribe(path_to_audio): |
|
with torch.cuda.amp.autocast(): |
|
text = pipe(audio_path, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] |
|
return text |
|
|
|
transcribe(path_to_audio) |
|
``` |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
[More Information Needed] |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: True |
|
- load_in_4bit: False |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: fp4 |
|
- bnb_4bit_use_double_quant: False |
|
- bnb_4bit_compute_dtype: float32 |
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.6.0.dev0 |
|
|