|
--- |
|
base_model: |
|
- microsoft/trocr-base-printed |
|
--- |
|
# anuashok/ocr-captcha-1 |
|
|
|
This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on your custom dataset. |
|
|
|
|
|
 |
|
|
|
## Training Summary |
|
|
|
- **CER**: 0.0496031746031746 |
|
- **Hyperparameters**: |
|
- Learning Rate: 3.4123022229050474e-05 |
|
- Batch Size: 8 |
|
- Num Epochs: 6 |
|
- Warmup Ratio: 0.057604550826554274 |
|
- Weight Decay: 0.0716137163865213 |
|
- Num Beams: 5 |
|
- Length Penalty: 0.8270021759785869 |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import VisionEncoderDecoderModel, TrOCRProcessor |
|
import torch |
|
from PIL import Image |
|
|
|
# Load model and processor |
|
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-1") |
|
model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-1") |
|
|
|
# Load image |
|
image = Image.open('path_to_your_image.jpg').convert("RGB") |
|
|
|
# Prepare image |
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
# Generate text |
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(generated_text) |