|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: group4_non_all_zero |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# group4_non_all_zero |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2820 |
|
- Precision: 0.0006 |
|
- Recall: 0.08 |
|
- F1: 0.0012 |
|
- Accuracy: 0.4380 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 5 | 2.1670 | 0.0 | 0.0 | 0.0 | 0.0084 | |
|
| No log | 2.0 | 10 | 2.3289 | 0.0 | 0.0 | 0.0 | 0.0078 | |
|
| No log | 3.0 | 15 | 2.3316 | 0.0 | 0.0 | 0.0 | 0.0078 | |
|
| No log | 4.0 | 20 | 2.0441 | 0.0 | 0.0 | 0.0 | 0.0078 | |
|
| No log | 5.0 | 25 | 2.4322 | 0.0 | 0.0 | 0.0 | 0.0078 | |
|
| No log | 6.0 | 30 | 1.7898 | 0.0 | 0.0 | 0.0 | 0.0106 | |
|
| No log | 7.0 | 35 | 1.8590 | 0.0002 | 0.0133 | 0.0004 | 0.0104 | |
|
| No log | 8.0 | 40 | 1.7022 | 0.0002 | 0.0133 | 0.0004 | 0.0250 | |
|
| No log | 9.0 | 45 | 1.5775 | 0.0004 | 0.04 | 0.0007 | 0.1004 | |
|
| No log | 10.0 | 50 | 1.4837 | 0.0006 | 0.08 | 0.0011 | 0.1939 | |
|
| No log | 11.0 | 55 | 1.3180 | 0.0004 | 0.0533 | 0.0008 | 0.3309 | |
|
| No log | 12.0 | 60 | 1.3418 | 0.0005 | 0.0667 | 0.0011 | 0.3799 | |
|
| No log | 13.0 | 65 | 1.3140 | 0.0005 | 0.0667 | 0.0010 | 0.4117 | |
|
| No log | 14.0 | 70 | 1.3444 | 0.0004 | 0.0533 | 0.0008 | 0.4048 | |
|
| No log | 15.0 | 75 | 1.2820 | 0.0006 | 0.08 | 0.0012 | 0.4380 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.13.3 |
|
|