English
music
emotion
music2emo / trainer.py
kjysmu's picture
Upload 5 files
2dfd92b verified
raw
history blame
21.9 kB
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from sklearn import metrics
from transformers import AutoModelForAudioClassification
import numpy as np
from collections import OrderedDict
from torchmetrics import MeanMetric, MaxMetric, Accuracy
import torchmetrics.functional as tmf
from model.linear import FeedforwardModel
from model.linear_small import FeedforwardModelSmall
from model.linear_attn_ck import FeedforwardModelAttnCK
from model.linear_mt import FeedforwardModelMT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
import logging
import yaml
from omegaconf import DictConfig
import torch
from torch.distributed import all_gather, get_world_size
# from lion_pytorch import Lion
from torch_optimizer import RAdam
def gather_all_results(tensor):
"""
Gather tensors from all GPUs in distributed training.
"""
gathered_tensors = [torch.zeros_like(tensor) for _ in range(get_world_size())]
all_gather(gathered_tensors, tensor)
return torch.cat(gathered_tensors, dim=0)
# torch.set_float32_matmul_precision('medium')
log = logging.getLogger(__name__)
class MusicClassifier(pl.LightningModule):
def __init__(self, cfg: DictConfig, output_file = None):
super(MusicClassifier, self).__init__()
self.cfg = cfg
self.encoder = cfg.model.encoder
self.classifier = cfg.model.classifier
self.lr = cfg.model.lr
self.output_file = output_file
self.kd = cfg.model.kd
self.kd_weight = cfg.model.kd_weight
self.kd_temperature = self.cfg.model.kd_temperature
layer_size = len(self.cfg.model.layers)
mert_dim = 768 * layer_size
self.feature_dim_dict = {
"MERT": mert_dim
}
encoders = self.encoder.split("-")
self.input_size = sum(self.feature_dim_dict[encoder] for encoder in encoders)
self.num_datasets = len(self.cfg.datasets)
if "mt" in self.classifier:
if self.num_datasets < 2:
raise Exception("Error: Dataset size >= 2 needed for MT classifier")
classifiers = {
"linear-mt-attn-ck": FeedforwardModelMTAttnCK,
}
if self.classifier in classifiers:
self.model = classifiers[self.classifier](
input_size=self.input_size,
output_size_classification=56,
output_size_regression=2
)
else:
raise Exception(f"Unknown classifier: {self.classifier}")
else:
if self.num_datasets >= 2:
raise Exception(f"Error: Dataset size == 1 needed for classifier")
dataset_name = self.cfg.datasets[0]
self.output_size = self.cfg.dataset[dataset_name].output_size
classifiers = {
"linear": FeedforwardModel,
"linear-attn-ck": FeedforwardModelAttnCK
}
if self.classifier in classifiers:
self.model = classifiers[self.classifier](input_size=self.input_size, output_size=self.output_size)
else:
raise Exception(f"Unknown classifier: {self.classifier}")
if self.kd:
self.teacher_models = {}
for dataset in self.cfg.datasets:
self.output_size = self.cfg.dataset[dataset].output_size
teacher_model_path = getattr(self.cfg, f"checkpoint_{dataset}", None)
if teacher_model_path:
# Create a new teacher model instance
teacher_model = FeedforwardModelAttnCK(
input_size=self.input_size,
output_size=self.output_size,
)
# Load the checkpoint
checkpoint = torch.load(teacher_model_path, map_location=self.device, weights_only=False)
state_dict = checkpoint["state_dict"]
# Adjust the keys in the state_dict
state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()}
# Filter state_dict to match model's keys
model_keys = set(teacher_model.state_dict().keys())
filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
# Load the filtered state_dict and set the model to evaluation mode
teacher_model.load_state_dict(filtered_state_dict)
teacher_model.to(self.device)
teacher_model.eval()
# Store the teacher model in the dictionary with the dataset name as the key
self.teacher_models[dataset] = teacher_model
probas = torch.from_numpy(np.load("dataset/jamendo/meta/probas_train.npy"))
pos_weight = torch.tensor(1.) / probas
weight = torch.tensor(2.) / (torch.tensor(1.) + pos_weight)
self.loss_fn_classification = nn.BCEWithLogitsLoss(
pos_weight=pos_weight,reduction="mean",weight=weight
)
self.loss_fn_classification_eval = nn.BCEWithLogitsLoss(
pos_weight=pos_weight,reduction="none",weight=weight
)
self.loss_fn_regression = nn.MSELoss()
self.loss_kd = nn.KLDivLoss(reduction="batchmean")
self.prd_array = []
self.gt_array = []
self.song_array = []
self.prd_array_va = []
self.gt_array_va = []
self.song_array_va = []
self.validation_predictions = []
self.validation_targets = []
self.validation_results = {'preds': [], 'gt': []}
self.trn_loss = MeanMetric()
self.val_loss = MeanMetric()
def forward(self, model_input_dic, output_idx = 0):
if "mt" in self.classifier:
classification_output, regression_output = self.model(model_input_dic)
if output_idx == 0:
return classification_output
elif output_idx == 1:
return regression_output
elif output_idx == 2:
return classification_output, regression_output
else:
output = self.model(model_input_dic)
return output
def compute_classification_loss(self, model_input_dic, y_mood):
classification_logits = self(model_input_dic, 0)
loss= self.loss_fn_classification(classification_logits, y_mood)
return loss
def compute_regression_loss(self, model_input_dic, y_va):
regression_output = self(model_input_dic, 1)
loss = self.loss_fn_regression(regression_output, y_va)
return loss
def compute_mt_loss(self, model_input_dic, y_mood, y_va):
classification_logits, regression_output = self(model_input_dic, 2)
loss_classification = self.loss_fn_classification(classification_logits, y_mood)
loss_regression = self.loss_fn_regression(regression_output, y_va)
return loss_classification, loss_regression
def compute_kd_loss(self, model_input_dic, y_mood, y_va, dataset_name):
"""
Compute knowledge distillation loss for a given dataset.
"""
# Forward pass through student model
s_logits_mood, s_logits_va = self(model_input_dic, 2)
# Compute student losses
s_loss_mood = self.loss_fn_classification(s_logits_mood, y_mood)
s_loss_va = self.loss_fn_regression(s_logits_va, y_va)
# Get the corresponding teacher model for the dataset
teacher_model = self.teacher_models.get(dataset_name)
teacher_model.to(self.device)
# Ensure teacher model exists
if teacher_model is None:
raise ValueError(f"No teacher model found for dataset: {dataset_name}")
with torch.no_grad():
# Forward pass through teacher model
t_logits = teacher_model(model_input_dic)
# Compute knowledge distillation losses
t_probs = torch.softmax(t_logits / self.kd_temperature, dim=-1)
if dataset_name == "jamendo":
s_probs_mood = torch.log_softmax(s_logits_mood / self.kd_temperature, dim=-1)
kd_loss = self.loss_kd(s_probs_mood, t_probs)
else:
s_probs_va = torch.log_softmax(s_logits_va / self.kd_temperature, dim=-1)
kd_loss = self.loss_kd(s_probs_va, t_probs)
return kd_loss, s_loss_mood, s_loss_va
def handle_dataset(self, dataset_name, batch, losses, total_loss, stage):
dataset_batch = batch[dataset_name]
model_input_dic = {}
model_input_dic["x_mert"] = dataset_batch["x_mert"]
model_input_dic["x_chord"] = dataset_batch["x_chord"]
model_input_dic["x_chord_root"] = dataset_batch["x_chord_root"]
model_input_dic["x_chord_attr"] = dataset_batch["x_chord_attr"]
model_input_dic["x_key"] = dataset_batch["x_key"]
if "mt" in self.classifier:
if dataset_name == "jamendo":
y_mood = dataset_batch["y_mood"]
y_va = dataset_batch["y_va"]
if self.kd:
kd_loss, s_loss_mood, s_loss_va = self.compute_kd_loss(model_input_dic, y_mood, y_va, dataset_name)
if stage == "train":
losses['loss_mood'] = s_loss_mood
total_loss += self.kd_weight * kd_loss + (1 - self.kd_weight) * s_loss_mood
else:
losses['loss_mood'] = s_loss_mood
total_loss += s_loss_mood
else:
s_loss_mood, s_loss_va = self.compute_mt_loss(model_input_dic, y_mood, y_va)
if stage == "train":
losses['loss_mood'] = s_loss_mood
total_loss += s_loss_mood
else:
losses['loss_mood'] = s_loss_mood
total_loss += s_loss_mood
else:
y_mood = dataset_batch["y_mood"]
y_va = dataset_batch["y_va"]
if self.kd:
kd_loss, s_loss_mood, s_loss_va = self.compute_kd_loss(model_input_dic, y_mood, y_va, dataset_name)
if stage == "train":
losses['loss_va'] = s_loss_va
total_loss += self.kd_weight * kd_loss + (1 - self.kd_weight) * s_loss_va
else:
losses['loss_va'] = s_loss_va
total_loss += s_loss_va
else:
s_loss_mood, s_loss_va = self.compute_mt_loss(model_input_dic, y_mood, y_va)
if stage == "train":
losses['loss_va'] = s_loss_va
total_loss += s_loss_va
else:
losses['loss_va'] = s_loss_va
total_loss += s_loss_va
else:
if dataset_name == "jamendo":
y_mood = dataset_batch["y_mood"]
loss_classification = self.compute_classification_loss(model_input_dic, y_mood)
losses['loss_mood'] = loss_classification
total_loss += loss_classification
else:
y_va = dataset_batch["y_va"]
loss_regression = self.compute_regression_loss(model_input_dic, y_va)
losses['loss_va'] = loss_regression
total_loss += loss_regression
return total_loss
def training_step(self, batch, batch_idx):
total_loss = 0
losses = {}
datasets = ["jamendo", "deam", "emomusic", "pmemo"]
for dataset in datasets:
if dataset in batch and batch[dataset] is not None:
total_loss = self.handle_dataset(dataset, batch, losses, total_loss, "train")
batch_size = batch[next(iter(batch))]["x_mert"].size(0)
self.log('train_loss_mood', losses.get('loss_mood', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('train_loss_va', losses.get('loss_va', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('train_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
return total_loss
def validation_step(self, batch, batch_idx):
total_loss = 0
losses = {}
datasets = ["jamendo", "deam", "emomusic", "pmemo"]
for dataset in datasets:
if dataset in batch and batch[dataset] is not None:
total_loss = self.handle_dataset(dataset, batch, losses, total_loss, "val")
batch_size = batch[next(iter(batch))]["x_mert"].size(0)
self.log('val_loss_mood', losses.get('loss_mood', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('val_loss_va', losses.get('loss_va', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('val_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
return total_loss
def test_step(self, batch, batch_idx):
total_loss = 0
losses = {}
datasets = ["jamendo", "deam", "emomusic", "pmemo"]
for dataset in datasets:
if dataset in batch and batch[dataset] is not None:
dataset_batch = batch[dataset]
model_input_dic = {}
model_input_dic["x_mert"] = dataset_batch["x_mert"]
model_input_dic["x_chord"] = dataset_batch["x_chord"]
model_input_dic["x_chord_root"] = dataset_batch["x_chord_root"]
model_input_dic["x_chord_attr"] = dataset_batch["x_chord_attr"]
model_input_dic["x_key"] = dataset_batch["x_key"]
if dataset == "jamendo":
y_mood = dataset_batch["y_mood"]
classification_logits = self(model_input_dic, 0)
loss_classification = self.loss_fn_classification(classification_logits, y_mood)
total_loss += loss_classification
probs = torch.sigmoid(classification_logits)
if not hasattr(self, 'jamendo_results'):
self.jamendo_results = {'preds': [], 'gt': [], 'paths': []}
self.jamendo_results['preds'].extend(probs.detach().cpu().numpy())
self.jamendo_results['gt'].extend(y_mood.detach().cpu().numpy())
self.jamendo_results['paths'].extend(dataset_batch["path"])
losses['test_loss_mood'] = loss_classification
else: # Handle regression for all other datasets
if batch[dataset] is not None:
y_va = dataset_batch["y_va"]
regression_output = self(model_input_dic, 1)
loss_regression = self.loss_fn_regression(regression_output, y_va)
total_loss += loss_regression
# Track results separately for each dataset
if not hasattr(self, f'{dataset}_results'):
setattr(self, f'{dataset}_results', {'preds': [], 'gt': [], 'paths': []})
dataset_results = getattr(self, f'{dataset}_results')
dataset_results['preds'].extend(regression_output.detach().cpu().numpy())
dataset_results['gt'].extend(y_va.detach().cpu().numpy())
dataset_results['paths'].extend(dataset_batch["path"])
losses['test_loss_va'] = loss_regression
batch_size = batch[next(iter(batch))]["x_mert"].size(0)
# Log the classification and regression losses
self.log('test_loss_mood', losses.get('test_loss_mood', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('test_loss_va', losses.get('test_loss_va', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('test_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
return total_loss
def on_test_end(self):
output_dic = {}
# Jamendo classification metrics (AUC and PR AUC)
if hasattr(self, 'jamendo_results') and self.jamendo_results['preds']:
roc_auc, pr_auc = self.get_auc(self.jamendo_results['preds'], self.jamendo_results['gt'])
roc_auc = roc_auc.item()
pr_auc = pr_auc.item()
log.info('*** Display ROC_AUC_MACRO scores (Jamendo) ***')
log.info(f"ROC_AUC_MACRO: {round(roc_auc, 4)}")
log.info(f"PR_AUC_MACRO: {round(pr_auc, 4)}")
if self.output_file is not None:
with open(self.output_file, 'a') as f:
f.write(f"ROC_AUC_MACRO (Jamendo): {round(roc_auc, 4)}\n")
f.write(f"PR_AUC_MACRO (Jamendo): {round(pr_auc, 4)}\n")
output_dic["test_roc_auc_jamendo"] = round(roc_auc, 4)
output_dic["test_pr_auc_jamendo"] = round(pr_auc, 4)
# Metrics for each regression dataset (DMDD, DEAM, EmoMusic, PMEmo)
for dataset in ["deam", "emomusic", "pmemo"]:
dataset_results = getattr(self, f'{dataset}_results', None)
if dataset_results and dataset_results['preds']:
preds = torch.tensor(np.array(dataset_results['preds']))
gts = torch.tensor(np.array(dataset_results['gt']))
# Assuming valence is the first column and arousal is the second
preds_valence = preds[:, 0]
preds_arousal = preds[:, 1]
gts_valence = gts[:, 0]
gts_arousal = gts[:, 1]
rmse = torch.sqrt(tmf.mean_squared_error(preds, gts))
r2 = tmf.r2_score(preds, gts)
# Calculate metrics for valence
rmse_valence = torch.sqrt(tmf.mean_squared_error(preds_valence, gts_valence))
r2_valence = tmf.r2_score(preds_valence, gts_valence)
# Calculate metrics for arousal
rmse_arousal = torch.sqrt(tmf.mean_squared_error(preds_arousal, gts_arousal))
r2_arousal = tmf.r2_score(preds_arousal, gts_arousal)
log.info(f'*** Display RMSE and R² scores ({dataset.upper()}) ***')
log.info(f"RMSE: {round(rmse.item(), 4)}")
log.info(f"R²: {round(r2.item(), 4)}")
log.info(f"Valence - RMSE: {round(rmse_valence.item(), 4)}, R²: {round(r2_valence.item(), 4)}")
log.info(f"Arousal - RMSE: {round(rmse_arousal.item(), 4)}, R²: {round(r2_arousal.item(), 4)}")
if self.output_file is not None:
with open(self.output_file, 'a') as f:
f.write(f"RMSE ({dataset.upper()}): {round(rmse.item(), 4)}\n")
f.write(f"R² ({dataset.upper()}): {round(r2.item(), 4)}\n")
f.write(f"Valence - RMSE ({dataset.upper()}): {round(rmse_valence.item(), 4)}\n")
f.write(f"Valence - R² ({dataset.upper()}): {round(r2_valence.item(), 4)}\n")
f.write(f"Arousal - RMSE ({dataset.upper()}): {round(rmse_arousal.item(), 4)}\n")
f.write(f"Arousal - R² ({dataset.upper()}): {round(r2_arousal.item(), 4)}\n")
output_dic[f"test_rmse_{dataset}"] = round(rmse.item(), 4)
output_dic[f"test_r2_{dataset}"] = round(r2.item(), 4)
output_dic[f"test_rmse_valence_{dataset}"] = round(rmse_valence.item(), 4)
output_dic[f"test_r2_valence_{dataset}"] = round(r2_valence.item(), 4)
output_dic[f"test_rmse_arousal_{dataset}"] = round(rmse_arousal.item(), 4)
output_dic[f"test_r2_arousal_{dataset}"] = round(r2_arousal.item(), 4)
# Clear results for each dataset
for dataset in ["jamendo", "deam", "emomusic", "pmemo"]:
if hasattr(self, f'{dataset}_results'):
getattr(self, f'{dataset}_results')['preds'].clear()
getattr(self, f'{dataset}_results')['gt'].clear()
getattr(self, f'{dataset}_results')['paths'].clear()
return output_dic
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.lr)
def get_auc(self, prd_array, gt_array):
prd_array = np.array(prd_array)
gt_array = np.array(gt_array)
prd_tensor = torch.tensor(prd_array)
gt_tensor = torch.tensor(gt_array)
try:
roc_auc = tmf.auroc(prd_tensor, gt_tensor.int(), task='multilabel', num_labels = 56 , average='macro', num_classes=gt_tensor.size(1))
pr_auc = tmf.average_precision(prd_tensor, gt_tensor.int(), task='multilabel', num_labels = 56, average='macro', num_classes=gt_tensor.size(1))
except ValueError as e:
print(f"Error computing metrics: {e}")
roc_auc = None
pr_auc = None
return roc_auc, pr_auc