File size: 21,887 Bytes
2dfd92b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from sklearn import metrics
from transformers import AutoModelForAudioClassification
import numpy as np
from collections import OrderedDict
from torchmetrics import MeanMetric, MaxMetric, Accuracy
import torchmetrics.functional as tmf
from model.linear import FeedforwardModel
from model.linear_small import FeedforwardModelSmall
from model.linear_attn_ck import FeedforwardModelAttnCK
from model.linear_mt import FeedforwardModelMT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
import logging
import yaml
from omegaconf import DictConfig
import torch
from torch.distributed import all_gather, get_world_size
# from lion_pytorch import Lion
from torch_optimizer import RAdam
def gather_all_results(tensor):
"""
Gather tensors from all GPUs in distributed training.
"""
gathered_tensors = [torch.zeros_like(tensor) for _ in range(get_world_size())]
all_gather(gathered_tensors, tensor)
return torch.cat(gathered_tensors, dim=0)
# torch.set_float32_matmul_precision('medium')
log = logging.getLogger(__name__)
class MusicClassifier(pl.LightningModule):
def __init__(self, cfg: DictConfig, output_file = None):
super(MusicClassifier, self).__init__()
self.cfg = cfg
self.encoder = cfg.model.encoder
self.classifier = cfg.model.classifier
self.lr = cfg.model.lr
self.output_file = output_file
self.kd = cfg.model.kd
self.kd_weight = cfg.model.kd_weight
self.kd_temperature = self.cfg.model.kd_temperature
layer_size = len(self.cfg.model.layers)
mert_dim = 768 * layer_size
self.feature_dim_dict = {
"MERT": mert_dim
}
encoders = self.encoder.split("-")
self.input_size = sum(self.feature_dim_dict[encoder] for encoder in encoders)
self.num_datasets = len(self.cfg.datasets)
if "mt" in self.classifier:
if self.num_datasets < 2:
raise Exception("Error: Dataset size >= 2 needed for MT classifier")
classifiers = {
"linear-mt-attn-ck": FeedforwardModelMTAttnCK,
}
if self.classifier in classifiers:
self.model = classifiers[self.classifier](
input_size=self.input_size,
output_size_classification=56,
output_size_regression=2
)
else:
raise Exception(f"Unknown classifier: {self.classifier}")
else:
if self.num_datasets >= 2:
raise Exception(f"Error: Dataset size == 1 needed for classifier")
dataset_name = self.cfg.datasets[0]
self.output_size = self.cfg.dataset[dataset_name].output_size
classifiers = {
"linear": FeedforwardModel,
"linear-attn-ck": FeedforwardModelAttnCK
}
if self.classifier in classifiers:
self.model = classifiers[self.classifier](input_size=self.input_size, output_size=self.output_size)
else:
raise Exception(f"Unknown classifier: {self.classifier}")
if self.kd:
self.teacher_models = {}
for dataset in self.cfg.datasets:
self.output_size = self.cfg.dataset[dataset].output_size
teacher_model_path = getattr(self.cfg, f"checkpoint_{dataset}", None)
if teacher_model_path:
# Create a new teacher model instance
teacher_model = FeedforwardModelAttnCK(
input_size=self.input_size,
output_size=self.output_size,
)
# Load the checkpoint
checkpoint = torch.load(teacher_model_path, map_location=self.device, weights_only=False)
state_dict = checkpoint["state_dict"]
# Adjust the keys in the state_dict
state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()}
# Filter state_dict to match model's keys
model_keys = set(teacher_model.state_dict().keys())
filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
# Load the filtered state_dict and set the model to evaluation mode
teacher_model.load_state_dict(filtered_state_dict)
teacher_model.to(self.device)
teacher_model.eval()
# Store the teacher model in the dictionary with the dataset name as the key
self.teacher_models[dataset] = teacher_model
probas = torch.from_numpy(np.load("dataset/jamendo/meta/probas_train.npy"))
pos_weight = torch.tensor(1.) / probas
weight = torch.tensor(2.) / (torch.tensor(1.) + pos_weight)
self.loss_fn_classification = nn.BCEWithLogitsLoss(
pos_weight=pos_weight,reduction="mean",weight=weight
)
self.loss_fn_classification_eval = nn.BCEWithLogitsLoss(
pos_weight=pos_weight,reduction="none",weight=weight
)
self.loss_fn_regression = nn.MSELoss()
self.loss_kd = nn.KLDivLoss(reduction="batchmean")
self.prd_array = []
self.gt_array = []
self.song_array = []
self.prd_array_va = []
self.gt_array_va = []
self.song_array_va = []
self.validation_predictions = []
self.validation_targets = []
self.validation_results = {'preds': [], 'gt': []}
self.trn_loss = MeanMetric()
self.val_loss = MeanMetric()
def forward(self, model_input_dic, output_idx = 0):
if "mt" in self.classifier:
classification_output, regression_output = self.model(model_input_dic)
if output_idx == 0:
return classification_output
elif output_idx == 1:
return regression_output
elif output_idx == 2:
return classification_output, regression_output
else:
output = self.model(model_input_dic)
return output
def compute_classification_loss(self, model_input_dic, y_mood):
classification_logits = self(model_input_dic, 0)
loss= self.loss_fn_classification(classification_logits, y_mood)
return loss
def compute_regression_loss(self, model_input_dic, y_va):
regression_output = self(model_input_dic, 1)
loss = self.loss_fn_regression(regression_output, y_va)
return loss
def compute_mt_loss(self, model_input_dic, y_mood, y_va):
classification_logits, regression_output = self(model_input_dic, 2)
loss_classification = self.loss_fn_classification(classification_logits, y_mood)
loss_regression = self.loss_fn_regression(regression_output, y_va)
return loss_classification, loss_regression
def compute_kd_loss(self, model_input_dic, y_mood, y_va, dataset_name):
"""
Compute knowledge distillation loss for a given dataset.
"""
# Forward pass through student model
s_logits_mood, s_logits_va = self(model_input_dic, 2)
# Compute student losses
s_loss_mood = self.loss_fn_classification(s_logits_mood, y_mood)
s_loss_va = self.loss_fn_regression(s_logits_va, y_va)
# Get the corresponding teacher model for the dataset
teacher_model = self.teacher_models.get(dataset_name)
teacher_model.to(self.device)
# Ensure teacher model exists
if teacher_model is None:
raise ValueError(f"No teacher model found for dataset: {dataset_name}")
with torch.no_grad():
# Forward pass through teacher model
t_logits = teacher_model(model_input_dic)
# Compute knowledge distillation losses
t_probs = torch.softmax(t_logits / self.kd_temperature, dim=-1)
if dataset_name == "jamendo":
s_probs_mood = torch.log_softmax(s_logits_mood / self.kd_temperature, dim=-1)
kd_loss = self.loss_kd(s_probs_mood, t_probs)
else:
s_probs_va = torch.log_softmax(s_logits_va / self.kd_temperature, dim=-1)
kd_loss = self.loss_kd(s_probs_va, t_probs)
return kd_loss, s_loss_mood, s_loss_va
def handle_dataset(self, dataset_name, batch, losses, total_loss, stage):
dataset_batch = batch[dataset_name]
model_input_dic = {}
model_input_dic["x_mert"] = dataset_batch["x_mert"]
model_input_dic["x_chord"] = dataset_batch["x_chord"]
model_input_dic["x_chord_root"] = dataset_batch["x_chord_root"]
model_input_dic["x_chord_attr"] = dataset_batch["x_chord_attr"]
model_input_dic["x_key"] = dataset_batch["x_key"]
if "mt" in self.classifier:
if dataset_name == "jamendo":
y_mood = dataset_batch["y_mood"]
y_va = dataset_batch["y_va"]
if self.kd:
kd_loss, s_loss_mood, s_loss_va = self.compute_kd_loss(model_input_dic, y_mood, y_va, dataset_name)
if stage == "train":
losses['loss_mood'] = s_loss_mood
total_loss += self.kd_weight * kd_loss + (1 - self.kd_weight) * s_loss_mood
else:
losses['loss_mood'] = s_loss_mood
total_loss += s_loss_mood
else:
s_loss_mood, s_loss_va = self.compute_mt_loss(model_input_dic, y_mood, y_va)
if stage == "train":
losses['loss_mood'] = s_loss_mood
total_loss += s_loss_mood
else:
losses['loss_mood'] = s_loss_mood
total_loss += s_loss_mood
else:
y_mood = dataset_batch["y_mood"]
y_va = dataset_batch["y_va"]
if self.kd:
kd_loss, s_loss_mood, s_loss_va = self.compute_kd_loss(model_input_dic, y_mood, y_va, dataset_name)
if stage == "train":
losses['loss_va'] = s_loss_va
total_loss += self.kd_weight * kd_loss + (1 - self.kd_weight) * s_loss_va
else:
losses['loss_va'] = s_loss_va
total_loss += s_loss_va
else:
s_loss_mood, s_loss_va = self.compute_mt_loss(model_input_dic, y_mood, y_va)
if stage == "train":
losses['loss_va'] = s_loss_va
total_loss += s_loss_va
else:
losses['loss_va'] = s_loss_va
total_loss += s_loss_va
else:
if dataset_name == "jamendo":
y_mood = dataset_batch["y_mood"]
loss_classification = self.compute_classification_loss(model_input_dic, y_mood)
losses['loss_mood'] = loss_classification
total_loss += loss_classification
else:
y_va = dataset_batch["y_va"]
loss_regression = self.compute_regression_loss(model_input_dic, y_va)
losses['loss_va'] = loss_regression
total_loss += loss_regression
return total_loss
def training_step(self, batch, batch_idx):
total_loss = 0
losses = {}
datasets = ["jamendo", "deam", "emomusic", "pmemo"]
for dataset in datasets:
if dataset in batch and batch[dataset] is not None:
total_loss = self.handle_dataset(dataset, batch, losses, total_loss, "train")
batch_size = batch[next(iter(batch))]["x_mert"].size(0)
self.log('train_loss_mood', losses.get('loss_mood', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('train_loss_va', losses.get('loss_va', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('train_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
return total_loss
def validation_step(self, batch, batch_idx):
total_loss = 0
losses = {}
datasets = ["jamendo", "deam", "emomusic", "pmemo"]
for dataset in datasets:
if dataset in batch and batch[dataset] is not None:
total_loss = self.handle_dataset(dataset, batch, losses, total_loss, "val")
batch_size = batch[next(iter(batch))]["x_mert"].size(0)
self.log('val_loss_mood', losses.get('loss_mood', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('val_loss_va', losses.get('loss_va', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('val_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
return total_loss
def test_step(self, batch, batch_idx):
total_loss = 0
losses = {}
datasets = ["jamendo", "deam", "emomusic", "pmemo"]
for dataset in datasets:
if dataset in batch and batch[dataset] is not None:
dataset_batch = batch[dataset]
model_input_dic = {}
model_input_dic["x_mert"] = dataset_batch["x_mert"]
model_input_dic["x_chord"] = dataset_batch["x_chord"]
model_input_dic["x_chord_root"] = dataset_batch["x_chord_root"]
model_input_dic["x_chord_attr"] = dataset_batch["x_chord_attr"]
model_input_dic["x_key"] = dataset_batch["x_key"]
if dataset == "jamendo":
y_mood = dataset_batch["y_mood"]
classification_logits = self(model_input_dic, 0)
loss_classification = self.loss_fn_classification(classification_logits, y_mood)
total_loss += loss_classification
probs = torch.sigmoid(classification_logits)
if not hasattr(self, 'jamendo_results'):
self.jamendo_results = {'preds': [], 'gt': [], 'paths': []}
self.jamendo_results['preds'].extend(probs.detach().cpu().numpy())
self.jamendo_results['gt'].extend(y_mood.detach().cpu().numpy())
self.jamendo_results['paths'].extend(dataset_batch["path"])
losses['test_loss_mood'] = loss_classification
else: # Handle regression for all other datasets
if batch[dataset] is not None:
y_va = dataset_batch["y_va"]
regression_output = self(model_input_dic, 1)
loss_regression = self.loss_fn_regression(regression_output, y_va)
total_loss += loss_regression
# Track results separately for each dataset
if not hasattr(self, f'{dataset}_results'):
setattr(self, f'{dataset}_results', {'preds': [], 'gt': [], 'paths': []})
dataset_results = getattr(self, f'{dataset}_results')
dataset_results['preds'].extend(regression_output.detach().cpu().numpy())
dataset_results['gt'].extend(y_va.detach().cpu().numpy())
dataset_results['paths'].extend(dataset_batch["path"])
losses['test_loss_va'] = loss_regression
batch_size = batch[next(iter(batch))]["x_mert"].size(0)
# Log the classification and regression losses
self.log('test_loss_mood', losses.get('test_loss_mood', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('test_loss_va', losses.get('test_loss_va', 0), on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
self.log('test_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, batch_size=batch_size)
return total_loss
def on_test_end(self):
output_dic = {}
# Jamendo classification metrics (AUC and PR AUC)
if hasattr(self, 'jamendo_results') and self.jamendo_results['preds']:
roc_auc, pr_auc = self.get_auc(self.jamendo_results['preds'], self.jamendo_results['gt'])
roc_auc = roc_auc.item()
pr_auc = pr_auc.item()
log.info('*** Display ROC_AUC_MACRO scores (Jamendo) ***')
log.info(f"ROC_AUC_MACRO: {round(roc_auc, 4)}")
log.info(f"PR_AUC_MACRO: {round(pr_auc, 4)}")
if self.output_file is not None:
with open(self.output_file, 'a') as f:
f.write(f"ROC_AUC_MACRO (Jamendo): {round(roc_auc, 4)}\n")
f.write(f"PR_AUC_MACRO (Jamendo): {round(pr_auc, 4)}\n")
output_dic["test_roc_auc_jamendo"] = round(roc_auc, 4)
output_dic["test_pr_auc_jamendo"] = round(pr_auc, 4)
# Metrics for each regression dataset (DMDD, DEAM, EmoMusic, PMEmo)
for dataset in ["deam", "emomusic", "pmemo"]:
dataset_results = getattr(self, f'{dataset}_results', None)
if dataset_results and dataset_results['preds']:
preds = torch.tensor(np.array(dataset_results['preds']))
gts = torch.tensor(np.array(dataset_results['gt']))
# Assuming valence is the first column and arousal is the second
preds_valence = preds[:, 0]
preds_arousal = preds[:, 1]
gts_valence = gts[:, 0]
gts_arousal = gts[:, 1]
rmse = torch.sqrt(tmf.mean_squared_error(preds, gts))
r2 = tmf.r2_score(preds, gts)
# Calculate metrics for valence
rmse_valence = torch.sqrt(tmf.mean_squared_error(preds_valence, gts_valence))
r2_valence = tmf.r2_score(preds_valence, gts_valence)
# Calculate metrics for arousal
rmse_arousal = torch.sqrt(tmf.mean_squared_error(preds_arousal, gts_arousal))
r2_arousal = tmf.r2_score(preds_arousal, gts_arousal)
log.info(f'*** Display RMSE and R² scores ({dataset.upper()}) ***')
log.info(f"RMSE: {round(rmse.item(), 4)}")
log.info(f"R²: {round(r2.item(), 4)}")
log.info(f"Valence - RMSE: {round(rmse_valence.item(), 4)}, R²: {round(r2_valence.item(), 4)}")
log.info(f"Arousal - RMSE: {round(rmse_arousal.item(), 4)}, R²: {round(r2_arousal.item(), 4)}")
if self.output_file is not None:
with open(self.output_file, 'a') as f:
f.write(f"RMSE ({dataset.upper()}): {round(rmse.item(), 4)}\n")
f.write(f"R² ({dataset.upper()}): {round(r2.item(), 4)}\n")
f.write(f"Valence - RMSE ({dataset.upper()}): {round(rmse_valence.item(), 4)}\n")
f.write(f"Valence - R² ({dataset.upper()}): {round(r2_valence.item(), 4)}\n")
f.write(f"Arousal - RMSE ({dataset.upper()}): {round(rmse_arousal.item(), 4)}\n")
f.write(f"Arousal - R² ({dataset.upper()}): {round(r2_arousal.item(), 4)}\n")
output_dic[f"test_rmse_{dataset}"] = round(rmse.item(), 4)
output_dic[f"test_r2_{dataset}"] = round(r2.item(), 4)
output_dic[f"test_rmse_valence_{dataset}"] = round(rmse_valence.item(), 4)
output_dic[f"test_r2_valence_{dataset}"] = round(r2_valence.item(), 4)
output_dic[f"test_rmse_arousal_{dataset}"] = round(rmse_arousal.item(), 4)
output_dic[f"test_r2_arousal_{dataset}"] = round(r2_arousal.item(), 4)
# Clear results for each dataset
for dataset in ["jamendo", "deam", "emomusic", "pmemo"]:
if hasattr(self, f'{dataset}_results'):
getattr(self, f'{dataset}_results')['preds'].clear()
getattr(self, f'{dataset}_results')['gt'].clear()
getattr(self, f'{dataset}_results')['paths'].clear()
return output_dic
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.lr)
def get_auc(self, prd_array, gt_array):
prd_array = np.array(prd_array)
gt_array = np.array(gt_array)
prd_tensor = torch.tensor(prd_array)
gt_tensor = torch.tensor(gt_array)
try:
roc_auc = tmf.auroc(prd_tensor, gt_tensor.int(), task='multilabel', num_labels = 56 , average='macro', num_classes=gt_tensor.size(1))
pr_auc = tmf.average_precision(prd_tensor, gt_tensor.int(), task='multilabel', num_labels = 56, average='macro', num_classes=gt_tensor.size(1))
except ValueError as e:
print(f"Error computing metrics: {e}")
roc_auc = None
pr_auc = None
return roc_auc, pr_auc
|