File size: 15,616 Bytes
6bb3796 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5085f13700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5085f11800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681750833194868209, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8GwP9S+LD9k7AS/InuqP0SjbD9Yuto/OXuYv+4kgb8M07C+9u14vmxyij+2j0i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]]", "desired_goal": "[[ 1.3809084 0.6747868 -0.51923203]\n [ 1.3318827 0.92436624 1.7088118 ]\n [-1.1912605 -1.0089395 -0.34536016]\n [-0.24309525 1.0816169 -0.78344285]]", "observation": "[[0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhzIDvqYP3r2I58g9ayrJvYUwoD1LJOY81zMbO/N4jb00xK49L84NviYRpjrb/Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12812243 -0.10842828 0.09809786]\n [-0.09822544 0.07821754 0.02809348]\n [ 0.0023682 -0.06907835 0.08533517]\n [-0.13848184 0.00126699 0.18260519]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIea7vw0FC07+UhpRSlIwBbJRLMowBdJRHQLKbBpnHvMN1fZQoaAZoCWgPQwi1/pYA/FPYv5SGlFKUaBVLMmgWR0Cymuj5wfhddX2UKGgGaAloD0MI9u0kIvyLzr+UhpRSlGgVSzJoFkdAsprDvfCQ93V9lChoBmgJaA9DCL5qZcIv9cm/lIaUUpRoFUsyaBZHQLKapdU83dd1fZQoaAZoCWgPQwjT25+Lhozhv5SGlFKUaBVLMmgWR0Cym5yi22G7dX2UKGgGaAloD0MIQnbexmZH1r+UhpRSlGgVSzJoFkdAspt/ILgGbHV9lChoBmgJaA9DCMbCEDl9Pcu/lIaUUpRoFUsyaBZHQLKbWeEIw/R1fZQoaAZoCWgPQwjd66S+LO3Iv5SGlFKUaBVLMmgWR0CymzvxhDw6dX2UKGgGaAloD0MIGhh5WRML3L+UhpRSlGgVSzJoFkdAspws7dSEUXV9lChoBmgJaA9DCNdMvtnmxtO/lIaUUpRoFUsyaBZHQLKcD1gYxcp1fZQoaAZoCWgPQwigUbr0L0nfv5SGlFKUaBVLMmgWR0Cym+ny3CsPdX2UKGgGaAloD0MIZOWXwRiR0b+UhpRSlGgVSzJoFkdAspvL8EV32XV9lChoBmgJaA9DCJ5cUyCzs9C/lIaUUpRoFUsyaBZHQLKcwPYWcjJ1fZQoaAZoCWgPQwipMSHmkqrbv5SGlFKUaBVLMmgWR0CynKNxZMcqdX2UKGgGaAloD0MIWI0lrI2x0r+UhpRSlGgVSzJoFkdAspx+FoL5RHV9lChoBmgJaA9DCHgI46dxb8a/lIaUUpRoFUsyaBZHQLKcYCIDYAd1fZQoaAZoCWgPQwhtNlZinpXRv5SGlFKUaBVLMmgWR0CynVazJIUbdX2UKGgGaAloD0MI/x8nTBjN1b+UhpRSlGgVSzJoFkdAsp05Nh3JP3V9lChoBmgJaA9DCIqT+x2KAs+/lIaUUpRoFUsyaBZHQLKdE/p+tr91fZQoaAZoCWgPQwhrYRbaOc3Uv5SGlFKUaBVLMmgWR0CynPXo1UEQdX2UKGgGaAloD0MIo87cQ8L33L+UhpRSlGgVSzJoFkdAsp3m8dxQznV9lChoBmgJaA9DCAQfgxWn2uC/lIaUUpRoFUsyaBZHQLKdyWGh24d1fZQoaAZoCWgPQwj5ugz/6Ybgv5SGlFKUaBVLMmgWR0CynaQZsKsudX2UKGgGaAloD0MInrEv2Xiw1L+UhpRSlGgVSzJoFkdAsp2GI7/4qXV9lChoBmgJaA9DCHcSEf5F0NK/lIaUUpRoFUsyaBZHQLKek3Lmp2l1fZQoaAZoCWgPQwjVtItppnvWv5SGlFKUaBVLMmgWR0CynnZI+W4WdX2UKGgGaAloD0MIwY7/AkGA0b+UhpRSlGgVSzJoFkdAsp5RXLeQ+3V9lChoBmgJaA9DCA2OklfnGNm/lIaUUpRoFUsyaBZHQLKeM83dbgV1fZQoaAZoCWgPQwj7H2Ct2jXLv5SGlFKUaBVLMmgWR0Cyn52EPDpDdX2UKGgGaAloD0MI+84vStBf4r+UhpRSlGgVSzJoFkdAsp+BREWqLnV9lChoBmgJaA9DCPz+zYsTX9K/lIaUUpRoFUsyaBZHQLKfXIBBAwB1fZQoaAZoCWgPQwhsPxnjw+zav5SGlFKUaBVLMmgWR0Cynz8IAwPAdX2UKGgGaAloD0MIoBuastMP07+UhpRSlGgVSzJoFkdAsqCQTwlSj3V9lChoBmgJaA9DCKWhRiHJrNq/lIaUUpRoFUsyaBZHQLKgcyfcvdx1fZQoaAZoCWgPQwjhC5OpglHJv5SGlFKUaBVLMmgWR0CyoE5EH+qBdX2UKGgGaAloD0MISkBMwoU8yr+UhpRSlGgVSzJoFkdAsqAwyKvV3HV9lChoBmgJaA9DCOS9amXCL9u/lIaUUpRoFUsyaBZHQLKhi1XvH951fZQoaAZoCWgPQwiAn3HhQEjQv5SGlFKUaBVLMmgWR0CyoW482aUidX2UKGgGaAloD0MIlPlH36Rp1r+UhpRSlGgVSzJoFkdAsqFJZV4oqnV9lChoBmgJaA9DCNz0Zz9SxOC/lIaUUpRoFUsyaBZHQLKhK/qgRK91fZQoaAZoCWgPQwgY0XZM3ZXRv5SGlFKUaBVLMmgWR0Cyon9/axoqdX2UKGgGaAloD0MIl299WG/U0L+UhpRSlGgVSzJoFkdAsqJiZZ0Sy3V9lChoBmgJaA9DCLGlR1M9mdS/lIaUUpRoFUsyaBZHQLKiPUPhAGB1fZQoaAZoCWgPQwg7GLFPAMXdv5SGlFKUaBVLMmgWR0Cyoh+pCKJmdX2UKGgGaAloD0MI9tIUAU7v1r+UhpRSlGgVSzJoFkdAsqNvEYO2A3V9lChoBmgJaA9DCINMMnIW9ti/lIaUUpRoFUsyaBZHQLKjUXO4XoF1fZQoaAZoCWgPQwhTlEvjF17Uv5SGlFKUaBVLMmgWR0CyoywtFrmAdX2UKGgGaAloD0MI1T2yuWqe37+UhpRSlGgVSzJoFkdAsqMOJ1q33HV9lChoBmgJaA9DCPuw3qgVptW/lIaUUpRoFUsyaBZHQLKkATNMXad1fZQoaAZoCWgPQwgCYhIu5BHUv5SGlFKUaBVLMmgWR0Cyo+OvllshdX2UKGgGaAloD0MIby9pjNZR1b+UhpRSlGgVSzJoFkdAsqO+XmeUZHV9lChoBmgJaA9DCA3fwrrx7uC/lIaUUpRoFUsyaBZHQLKjoGkep4t1fZQoaAZoCWgPQwiJJlDEIobgv5SGlFKUaBVLMmgWR0CypI6nWJ7+dX2UKGgGaAloD0MIHsTOFDqvxb+UhpRSlGgVSzJoFkdAsqRxHd43WHV9lChoBmgJaA9DCE5GlWHcDdy/lIaUUpRoFUsyaBZHQLKkS84gieN1fZQoaAZoCWgPQwjtSWBzDh7iv5SGlFKUaBVLMmgWR0CypC3kcS5BdX2UKGgGaAloD0MIq1yo/Gt547+UhpRSlGgVSzJoFkdAsqUcsoUi6nV9lChoBmgJaA9DCLO0U3O5wdO/lIaUUpRoFUsyaBZHQLKk/yS3b211fZQoaAZoCWgPQwiF0EGXcOjUv5SGlFKUaBVLMmgWR0CypNnkgfU4dX2UKGgGaAloD0MIFf93RIXq0r+UhpRSlGgVSzJoFkdAsqS79rGipXV9lChoBmgJaA9DCA6D+StkrsS/lIaUUpRoFUsyaBZHQLKlrkK/mDF1fZQoaAZoCWgPQwjg2omSkEjWv5SGlFKUaBVLMmgWR0CypZCkfs/qdX2UKGgGaAloD0MIWB6kp8ghyL+UhpRSlGgVSzJoFkdAsqVrThHby3V9lChoBmgJaA9DCIbijjf5LeC/lIaUUpRoFUsyaBZHQLKlTVqesgd1fZQoaAZoCWgPQwi53jZTIR7av5SGlFKUaBVLMmgWR0CypjuiJwbVdX2UKGgGaAloD0MIfsNEgxQ80L+UhpRSlGgVSzJoFkdAsqYeIInjQ3V9lChoBmgJaA9DCNdP/1nz49K/lIaUUpRoFUsyaBZHQLKl+N/e+Eh1fZQoaAZoCWgPQwirl99pMuPgv5SGlFKUaBVLMmgWR0Cypdrd8Aq/dX2UKGgGaAloD0MIbVUS2QdZ1r+UhpRSlGgVSzJoFkdAsqbMmUnogXV9lChoBmgJaA9DCDnv/+OECdm/lIaUUpRoFUsyaBZHQLKmrwkxASp1fZQoaAZoCWgPQwidLLXeb7TZv5SGlFKUaBVLMmgWR0CypomnbZezdX2UKGgGaAloD0MI4Q1pVOBk2L+UhpRSlGgVSzJoFkdAsqZru4PPLXV9lChoBmgJaA9DCA/SU+QQccW/lIaUUpRoFUsyaBZHQLKnceC04R51fZQoaAZoCWgPQwgaGeQuwhTZv5SGlFKUaBVLMmgWR0Cyp1RAv+OwdX2UKGgGaAloD0MIcvxQacTM5L+UhpRSlGgVSzJoFkdAsqcvYYixFHV9lChoBmgJaA9DCOtztRX7y9y/lIaUUpRoFUsyaBZHQLKnEVbA1vV1fZQoaAZoCWgPQwiet7HZkerXv5SGlFKUaBVLMmgWR0CyqAOT7l7udX2UKGgGaAloD0MIRzgteNFXxr+UhpRSlGgVSzJoFkdAsqfmDRMN+nV9lChoBmgJaA9DCIaqmEo/4da/lIaUUpRoFUsyaBZHQLKnwNC7btZ1fZQoaAZoCWgPQwhIaqFkcmrav5SGlFKUaBVLMmgWR0Cyp6LZamoBdX2UKGgGaAloD0MIyjSaXIyB3r+UhpRSlGgVSzJoFkdAsqiawV0tAnV9lChoBmgJaA9DCLCsNCkF3de/lIaUUpRoFUsyaBZHQLKofRSxZ+x1fZQoaAZoCWgPQwgNjLysiQXEv5SGlFKUaBVLMmgWR0CyqFfNmlImdX2UKGgGaAloD0MIlUc3wqIi0L+UhpRSlGgVSzJoFkdAsqg54JNTLnV9lChoBmgJaA9DCD3UtmEUBNW/lIaUUpRoFUsyaBZHQLKpK6WgOBl1fZQoaAZoCWgPQwjACYUIOATgv5SGlFKUaBVLMmgWR0CyqQ4PXkHVdX2UKGgGaAloD0MIz4dnCTICzL+UhpRSlGgVSzJoFkdAsqjotDlYEHV9lChoBmgJaA9DCKLxRBDnYeC/lIaUUpRoFUsyaBZHQLKoysEaESN1fZQoaAZoCWgPQwg82c2MfjTQv5SGlFKUaBVLMmgWR0CyqcyuMdcTdX2UKGgGaAloD0MIuyakNQYd4b+UhpRSlGgVSzJoFkdAsqmvdM0xd3V9lChoBmgJaA9DCBzTE5Z4QMu/lIaUUpRoFUsyaBZHQLKpijiXIEN1fZQoaAZoCWgPQwhpw2Fp4Efcv5SGlFKUaBVLMmgWR0CyqWwnhKlIdX2UKGgGaAloD0MIqfV+ox032L+UhpRSlGgVSzJoFkdAsqpew9q1xHV9lChoBmgJaA9DCLkcr0D0pNC/lIaUUpRoFUsyaBZHQLKqQUJfICF1fZQoaAZoCWgPQwh40y07xD+4v5SGlFKUaBVLMmgWR0CyqhwC8vmHdX2UKGgGaAloD0MIU5W2uMZn2b+UhpRSlGgVSzJoFkdAsqn+HaewtHV9lChoBmgJaA9DCHeC/de5acO/lIaUUpRoFUsyaBZHQLKrAA0Kqn51fZQoaAZoCWgPQwh6GcVySyvgv5SGlFKUaBVLMmgWR0CyquLel9BsdX2UKGgGaAloD0MIQ3QIHAk00b+UhpRSlGgVSzJoFkdAsqq9nCfpU3V9lChoBmgJaA9DCGuA0lCjkNe/lIaUUpRoFUsyaBZHQLKqn6/IsAh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |