alvarobb commited on
Commit
6bb3796
·
1 Parent(s): f1b43be

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -6.97 +/- 2.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.37 +/- 0.17
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:48f95864b72e819298481cae9b86b1373dfd5c9e94a83d0cfbdf7259a6899eed
3
- size 108058
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e17a3cd25d4778b3fe22f8c9e929969ae0e73eb397e7673a9e29f50abbecff4
3
+ size 109530
a2c-PandaReachDense-v2/data CHANGED
@@ -4,14 +4,16 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3b6dca3d30>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f3b6dca5900>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
- ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
 
 
15
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
  "optimizer_kwargs": {
17
  "alpha": 0.99,
@@ -19,24 +21,24 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1000000,
23
- "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1681672713055806020,
28
- "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
31
  ":type:": "<class 'function'>",
32
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZAfFPr4Pn718LAU/ZAfFPr4Pn718LAU/ZAfFPr4Pn718LAU/ZAfFPr4Pn718LAU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3wH0u6WBAb/RNEO/WETRPzBw1L+2b6g+khsGv0Rn2T8U/vc+XOxPvww9ur952qI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDxkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDxkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDxkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.384822 -0.07766674 0.52021 ]\n [ 0.384822 -0.07766674 0.52021 ]\n [ 0.384822 -0.07766674 0.52021 ]\n [ 0.384822 -0.07766674 0.52021 ]]",
38
- "desired_goal": "[[-0.00744651 -0.50588447 -0.76252466]\n [ 1.6348982 -1.6596737 0.3289773 ]\n [-0.5238582 1.6984639 0.48436034]\n [-0.8122003 -1.454988 1.2722923 ]]",
39
- "observation": "[[ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]\n [ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]\n [ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]\n [ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,28 +46,28 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGXUQPkTnQzwHCFs7QYqjvciB1D1TCoM+1Q3vvcGACT5Vg5U+CnnmPcwwCD1AqGM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[ 0.14107169 0.01195699 0.00334215]\n [-0.07985354 0.10376316 0.25593814]\n [-0.1167256 0.13428022 0.2920176 ]\n [ 0.11253555 0.03324966 0.22232151]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
53
- "use_sde": false,
54
  "sde_sample_freq": -1,
55
  "_current_progress_remaining": 0.0,
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInDI334jOFsCUhpRSlIwBbJRLMowBdJRHQKcSF2dupCN1fZQoaAZoCWgPQwjOVIhH4gUTwJSGlFKUaBVLMmgWR0CnEb9m6GxmdX2UKGgGaAloD0MIYtf2dktCHMCUhpRSlGgVSzJoFkdApxFhky1uznV9lChoBmgJaA9DCNgrLLgfYBfAlIaUUpRoFUsyaBZHQKcRDHRTjvN1fZQoaAZoCWgPQwjl0Y2wqFgWwJSGlFKUaBVLMmgWR0CnEwaLXL/0dX2UKGgGaAloD0MITdcTXRfuFsCUhpRSlGgVSzJoFkdApxKukP+XJHV9lChoBmgJaA9DCJuPa0PF6BbAlIaUUpRoFUsyaBZHQKcSUL8aXKN1fZQoaAZoCWgPQwg9SE+RQ4QYwJSGlFKUaBVLMmgWR0CnEfu7YkE+dX2UKGgGaAloD0MI0c5pFmjHHcCUhpRSlGgVSzJoFkdApxPnmDDjznV9lChoBmgJaA9DCB7htOBFXxfAlIaUUpRoFUsyaBZHQKcTj5X2dup1fZQoaAZoCWgPQwj1L0llipkTwJSGlFKUaBVLMmgWR0CnEzIC+10DdX2UKGgGaAloD0MId/UqMjqQGsCUhpRSlGgVSzJoFkdApxLdS619fHV9lChoBmgJaA9DCK6gaYmV0RDAlIaUUpRoFUsyaBZHQKcUwi22G7B1fZQoaAZoCWgPQwjT2jS21/IZwJSGlFKUaBVLMmgWR0CnFGois4kvdX2UKGgGaAloD0MIswsG19wREcCUhpRSlGgVSzJoFkdApxQMYEW69XV9lChoBmgJaA9DCHGvzFt1DRTAlIaUUpRoFUsyaBZHQKcTtz8xbjd1fZQoaAZoCWgPQwhOX8/XLAcUwJSGlFKUaBVLMmgWR0CnFe1EE1VHdX2UKGgGaAloD0MI2/0qwHc7FcCUhpRSlGgVSzJoFkdApxWWMQ2/BXV9lChoBmgJaA9DCHI3iNaKFh3AlIaUUpRoFUsyaBZHQKcVOR8twrF1fZQoaAZoCWgPQwhjYYicvr4SwJSGlFKUaBVLMmgWR0CnFOTU7Sy/dX2UKGgGaAloD0MI+tFwytycDcCUhpRSlGgVSzJoFkdApxdbIFNcnnV9lChoBmgJaA9DCCfcK/NWTSLAlIaUUpRoFUsyaBZHQKcXA6oVEeB1fZQoaAZoCWgPQwhjm1Q01l4WwJSGlFKUaBVLMmgWR0CnFqZu63AmdX2UKGgGaAloD0MIoOHNGrx/FMCUhpRSlGgVSzJoFkdApxZSADq4Y3V9lChoBmgJaA9DCEPKT6p9ug/AlIaUUpRoFUsyaBZHQKcYxpJwsGx1fZQoaAZoCWgPQwjsh9hg4SQRwJSGlFKUaBVLMmgWR0CnGG8f3evZdX2UKGgGaAloD0MIzEOmfAh6FcCUhpRSlGgVSzJoFkdApxgR+WnjyXV9lChoBmgJaA9DCI7lXfWAmRDAlIaUUpRoFUsyaBZHQKcXvWsA/9p1fZQoaAZoCWgPQwjnps04DbETwJSGlFKUaBVLMmgWR0CnGkoJqqOtdX2UKGgGaAloD0MI9PkoIy6QGMCUhpRSlGgVSzJoFkdApxnyrHU+cHV9lChoBmgJaA9DCIgRwqONYxPAlIaUUpRoFUsyaBZHQKcZlbwBo251fZQoaAZoCWgPQwhVppiDoMMbwJSGlFKUaBVLMmgWR0CnGUFI/Z/TdX2UKGgGaAloD0MIWwuz0M6JGsCUhpRSlGgVSzJoFkdApxvIevIOpnV9lChoBmgJaA9DCDi+9sySYBPAlIaUUpRoFUsyaBZHQKcbcYqG1x91fZQoaAZoCWgPQwh0sz9QbtsYwJSGlFKUaBVLMmgWR0CnGxTGxUvPdX2UKGgGaAloD0MILXx9rUsNC8CUhpRSlGgVSzJoFkdApxrAV9F4LXV9lChoBmgJaA9DCMP1KFyPMhjAlIaUUpRoFUsyaBZHQKcdcTyrgfl1fZQoaAZoCWgPQwhwW1t4XtoawJSGlFKUaBVLMmgWR0CnHRq8tf5UdX2UKGgGaAloD0MIkNlZ9E6VFMCUhpRSlGgVSzJoFkdApxy9mQKa5XV9lChoBmgJaA9DCPWCT3PywgnAlIaUUpRoFUsyaBZHQKccaW3z+WJ1fZQoaAZoCWgPQwj4UQ37PTEbwJSGlFKUaBVLMmgWR0CnHlOhbnoxdX2UKGgGaAloD0MIj4tqEVE8FMCUhpRSlGgVSzJoFkdApx37nJT2nXV9lChoBmgJaA9DCKD+s+bH3xzAlIaUUpRoFUsyaBZHQKcdne40/GF1fZQoaAZoCWgPQwgC02ndBsUgwJSGlFKUaBVLMmgWR0CnHUjLKV6edX2UKGgGaAloD0MIWeAruvX6DcCUhpRSlGgVSzJoFkdApx9Ackt293V9lChoBmgJaA9DCHnr/Ntl3yDAlIaUUpRoFUsyaBZHQKce6HB1s+F1fZQoaAZoCWgPQwhnRdREn+8VwJSGlFKUaBVLMmgWR0CnHoq9oN/fdX2UKGgGaAloD0MImu51Ul8WFMCUhpRSlGgVSzJoFkdApx41ygf2b3V9lChoBmgJaA9DCODVcmcmqCDAlIaUUpRoFUsyaBZHQKcgGl8gIQh1fZQoaAZoCWgPQwjMfAc/cSAWwJSGlFKUaBVLMmgWR0CnH8JaaCtjdX2UKGgGaAloD0MIqMR1jCsuFsCUhpRSlGgVSzJoFkdApx9klHBk7XV9lChoBmgJaA9DCKMHPgYrjiDAlIaUUpRoFUsyaBZHQKcfD3Cbc451fZQoaAZoCWgPQwhXI7vSMgogwJSGlFKUaBVLMmgWR0CnIPh3A2ycdX2UKGgGaAloD0MIFEGchxM4F8CUhpRSlGgVSzJoFkdApyCgzDXOGHV9lChoBmgJaA9DCPePhegQmBfAlIaUUpRoFUsyaBZHQKcgQyKNyYJ1fZQoaAZoCWgPQwiIE5hO6wYewJSGlFKUaBVLMmgWR0CnH+4cm0E6dX2UKGgGaAloD0MI6q7sgsG1IMCUhpRSlGgVSzJoFkdApyHTnLaEjHV9lChoBmgJaA9DCKtefqfJ/BvAlIaUUpRoFUsyaBZHQKche6Oo5xR1fZQoaAZoCWgPQwhXQndJnJUXwJSGlFKUaBVLMmgWR0CnIR3fZVXFdX2UKGgGaAloD0MI3795ceKbIMCUhpRSlGgVSzJoFkdApyDI1+AmRnV9lChoBmgJaA9DCKezk8FRAh7AlIaUUpRoFUsyaBZHQKciztFa0Qd1fZQoaAZoCWgPQwhauKzCZoAXwJSGlFKUaBVLMmgWR0CnInbYkE9udX2UKGgGaAloD0MImYHK+PepE8CUhpRSlGgVSzJoFkdApyIZXQtz0nV9lChoBmgJaA9DCPThWYKMABfAlIaUUpRoFUsyaBZHQKchxES/TLJ1fZQoaAZoCWgPQwhPrFPle0YZwJSGlFKUaBVLMmgWR0CnI7f1HvtudX2UKGgGaAloD0MIr2Ab8WSHGMCUhpRSlGgVSzJoFkdApyNgAGSpznV9lChoBmgJaA9DCFG+oIUExCLAlIaUUpRoFUsyaBZHQKcjAmOU+s51fZQoaAZoCWgPQwhZi08BMP4XwJSGlFKUaBVLMmgWR0CnIq1YISlFdX2UKGgGaAloD0MIsqGb/YGiI8CUhpRSlGgVSzJoFkdApySbxgAp8XV9lChoBmgJaA9DCAbZsnxdhgrAlIaUUpRoFUsyaBZHQKckRAKOT7l1fZQoaAZoCWgPQwjE0OrkDDUTwJSGlFKUaBVLMmgWR0CnI+aInBtUdX2UKGgGaAloD0MI7Ny0GafhEcCUhpRSlGgVSzJoFkdApyORYq5LAnV9lChoBmgJaA9DCOxph78mqyXAlIaUUpRoFUsyaBZHQKcleS4e9zx1fZQoaAZoCWgPQwjPLAlQU2sbwJSGlFKUaBVLMmgWR0CnJSFK9PDYdX2UKGgGaAloD0MIAz+qYb/3G8CUhpRSlGgVSzJoFkdApyTDhxYJV3V9lChoBmgJaA9DCHhi1ouhjBjAlIaUUpRoFUsyaBZHQKckbmU4aP11fZQoaAZoCWgPQwhha7bykt8awJSGlFKUaBVLMmgWR0CnJlZPEbYLdX2UKGgGaAloD0MIyY6NQLxeGMCUhpRSlGgVSzJoFkdApyX+R/3Fk3V9lChoBmgJaA9DCCaL+49MtxDAlIaUUpRoFUsyaBZHQKcloKHfuTl1fZQoaAZoCWgPQwgs9SwI5Q0TwJSGlFKUaBVLMmgWR0CnJUuryUcGdX2UKGgGaAloD0MITtL8Ma2NEMCUhpRSlGgVSzJoFkdApydBq0tyxXV9lChoBmgJaA9DCCEeiZenwyDAlIaUUpRoFUsyaBZHQKcm6ez2OAB1fZQoaAZoCWgPQwgDQYAMHasgwJSGlFKUaBVLMmgWR0CnJowlKK51dX2UKGgGaAloD0MIgxlTsMb5G8CUhpRSlGgVSzJoFkdApyY3B55Z83V9lChoBmgJaA9DCJkR3h6EgCDAlIaUUpRoFUsyaBZHQKcoH9y925h1fZQoaAZoCWgPQwgipkQSvTQkwJSGlFKUaBVLMmgWR0CnJ8fOMVDbdX2UKGgGaAloD0MILLZJRWNtEsCUhpRSlGgVSzJoFkdApydqO3lS0nV9lChoBmgJaA9DCLZnlgSo2RjAlIaUUpRoFUsyaBZHQKcnFRO1v2p1fZQoaAZoCWgPQwjwaU5eZEIhwJSGlFKUaBVLMmgWR0CnKQyyt3fRdX2UKGgGaAloD0MIg6W6gJcJEsCUhpRSlGgVSzJoFkdApyi0uQIUrXV9lChoBmgJaA9DCHdLcsCuJgnAlIaUUpRoFUsyaBZHQKcoVyy2QXB1fZQoaAZoCWgPQwh3n+OjxVkXwJSGlFKUaBVLMmgWR0CnKAIhY/3WdX2UKGgGaAloD0MIE2OZfonwIsCUhpRSlGgVSzJoFkdApyn1fJFLFnV9lChoBmgJaA9DCOPFwhA53RjAlIaUUpRoFUsyaBZHQKcpnZs9B8h1fZQoaAZoCWgPQwhl4lZBDLwhwJSGlFKUaBVLMmgWR0CnKUAte2NOdX2UKGgGaAloD0MIDcLc7uVeC8CUhpRSlGgVSzJoFkdApyjrSXt0FXV9lChoBmgJaA9DCDoCuFm86BPAlIaUUpRoFUsyaBZHQKcqzXiBGx51fZQoaAZoCWgPQwgRbjKqDFMZwJSGlFKUaBVLMmgWR0CnKnWPDHfedX2UKGgGaAloD0MIW3wKgPFcEMCUhpRSlGgVSzJoFkdApyoYM+eOGXV9lChoBmgJaA9DCLh3DfrSmxjAlIaUUpRoFUsyaBZHQKcpwxSpBHF1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 50000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
- "gae_lambda": 1.0,
69
  "ent_coef": 0.0,
70
  "vf_coef": 0.5,
71
  "max_grad_norm": 0.5,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5085f13700>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f5085f11800>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
  "optimizer_kwargs": {
19
  "alpha": 0.99,
 
21
  "weight_decay": 0
22
  }
23
  },
24
+ "num_timesteps": 1500000,
25
+ "_total_timesteps": 1500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1681750833194868209,
30
+ "learning_rate": 0.0001,
31
  "tensorboard_log": null,
32
  "lr_schedule": {
33
  ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
  },
36
  "_last_obs": {
37
  ":type:": "<class 'collections.OrderedDict'>",
38
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8GwP9S+LD9k7AS/InuqP0SjbD9Yuto/OXuYv+4kgb8M07C+9u14vmxyij+2j0i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjyUaA5LBEsGhpRoEnSUUpR1Lg==",
39
+ "achieved_goal": "[[0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]]",
40
+ "desired_goal": "[[ 1.3809084 0.6747868 -0.51923203]\n [ 1.3318827 0.92436624 1.7088118 ]\n [-1.1912605 -1.0089395 -0.34536016]\n [-0.24309525 1.0816169 -0.78344285]]",
41
+ "observation": "[[0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]]"
42
  },
43
  "_last_episode_starts": {
44
  ":type:": "<class 'numpy.ndarray'>",
 
46
  },
47
  "_last_original_obs": {
48
  ":type:": "<class 'collections.OrderedDict'>",
49
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhzIDvqYP3r2I58g9ayrJvYUwoD1LJOY81zMbO/N4jb00xK49L84NviYRpjrb/Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
50
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
51
+ "desired_goal": "[[-0.12812243 -0.10842828 0.09809786]\n [-0.09822544 0.07821754 0.02809348]\n [ 0.0023682 -0.06907835 0.08533517]\n [-0.13848184 0.00126699 0.18260519]]",
52
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
53
  },
54
  "_episode_num": 0,
55
+ "use_sde": true,
56
  "sde_sample_freq": -1,
57
  "_current_progress_remaining": 0.0,
58
  "_stats_window_size": 100,
59
  "ep_info_buffer": {
60
  ":type:": "<class 'collections.deque'>",
61
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIea7vw0FC07+UhpRSlIwBbJRLMowBdJRHQLKbBpnHvMN1fZQoaAZoCWgPQwi1/pYA/FPYv5SGlFKUaBVLMmgWR0Cymuj5wfhddX2UKGgGaAloD0MI9u0kIvyLzr+UhpRSlGgVSzJoFkdAsprDvfCQ93V9lChoBmgJaA9DCL5qZcIv9cm/lIaUUpRoFUsyaBZHQLKapdU83dd1fZQoaAZoCWgPQwjT25+Lhozhv5SGlFKUaBVLMmgWR0Cym5yi22G7dX2UKGgGaAloD0MIQnbexmZH1r+UhpRSlGgVSzJoFkdAspt/ILgGbHV9lChoBmgJaA9DCMbCEDl9Pcu/lIaUUpRoFUsyaBZHQLKbWeEIw/R1fZQoaAZoCWgPQwjd66S+LO3Iv5SGlFKUaBVLMmgWR0CymzvxhDw6dX2UKGgGaAloD0MIGhh5WRML3L+UhpRSlGgVSzJoFkdAspws7dSEUXV9lChoBmgJaA9DCNdMvtnmxtO/lIaUUpRoFUsyaBZHQLKcD1gYxcp1fZQoaAZoCWgPQwigUbr0L0nfv5SGlFKUaBVLMmgWR0Cym+ny3CsPdX2UKGgGaAloD0MIZOWXwRiR0b+UhpRSlGgVSzJoFkdAspvL8EV32XV9lChoBmgJaA9DCJ5cUyCzs9C/lIaUUpRoFUsyaBZHQLKcwPYWcjJ1fZQoaAZoCWgPQwipMSHmkqrbv5SGlFKUaBVLMmgWR0CynKNxZMcqdX2UKGgGaAloD0MIWI0lrI2x0r+UhpRSlGgVSzJoFkdAspx+FoL5RHV9lChoBmgJaA9DCHgI46dxb8a/lIaUUpRoFUsyaBZHQLKcYCIDYAd1fZQoaAZoCWgPQwhtNlZinpXRv5SGlFKUaBVLMmgWR0CynVazJIUbdX2UKGgGaAloD0MI/x8nTBjN1b+UhpRSlGgVSzJoFkdAsp05Nh3JP3V9lChoBmgJaA9DCIqT+x2KAs+/lIaUUpRoFUsyaBZHQLKdE/p+tr91fZQoaAZoCWgPQwhrYRbaOc3Uv5SGlFKUaBVLMmgWR0CynPXo1UEQdX2UKGgGaAloD0MIo87cQ8L33L+UhpRSlGgVSzJoFkdAsp3m8dxQznV9lChoBmgJaA9DCAQfgxWn2uC/lIaUUpRoFUsyaBZHQLKdyWGh24d1fZQoaAZoCWgPQwj5ugz/6Ybgv5SGlFKUaBVLMmgWR0CynaQZsKsudX2UKGgGaAloD0MInrEv2Xiw1L+UhpRSlGgVSzJoFkdAsp2GI7/4qXV9lChoBmgJaA9DCHcSEf5F0NK/lIaUUpRoFUsyaBZHQLKek3Lmp2l1fZQoaAZoCWgPQwjVtItppnvWv5SGlFKUaBVLMmgWR0CynnZI+W4WdX2UKGgGaAloD0MIwY7/AkGA0b+UhpRSlGgVSzJoFkdAsp5RXLeQ+3V9lChoBmgJaA9DCA2OklfnGNm/lIaUUpRoFUsyaBZHQLKeM83dbgV1fZQoaAZoCWgPQwj7H2Ct2jXLv5SGlFKUaBVLMmgWR0Cyn52EPDpDdX2UKGgGaAloD0MI+84vStBf4r+UhpRSlGgVSzJoFkdAsp+BREWqLnV9lChoBmgJaA9DCPz+zYsTX9K/lIaUUpRoFUsyaBZHQLKfXIBBAwB1fZQoaAZoCWgPQwhsPxnjw+zav5SGlFKUaBVLMmgWR0Cynz8IAwPAdX2UKGgGaAloD0MIoBuastMP07+UhpRSlGgVSzJoFkdAsqCQTwlSj3V9lChoBmgJaA9DCKWhRiHJrNq/lIaUUpRoFUsyaBZHQLKgcyfcvdx1fZQoaAZoCWgPQwjhC5OpglHJv5SGlFKUaBVLMmgWR0CyoE5EH+qBdX2UKGgGaAloD0MISkBMwoU8yr+UhpRSlGgVSzJoFkdAsqAwyKvV3HV9lChoBmgJaA9DCOS9amXCL9u/lIaUUpRoFUsyaBZHQLKhi1XvH951fZQoaAZoCWgPQwiAn3HhQEjQv5SGlFKUaBVLMmgWR0CyoW482aUidX2UKGgGaAloD0MIlPlH36Rp1r+UhpRSlGgVSzJoFkdAsqFJZV4oqnV9lChoBmgJaA9DCNz0Zz9SxOC/lIaUUpRoFUsyaBZHQLKhK/qgRK91fZQoaAZoCWgPQwgY0XZM3ZXRv5SGlFKUaBVLMmgWR0Cyon9/axoqdX2UKGgGaAloD0MIl299WG/U0L+UhpRSlGgVSzJoFkdAsqJiZZ0Sy3V9lChoBmgJaA9DCLGlR1M9mdS/lIaUUpRoFUsyaBZHQLKiPUPhAGB1fZQoaAZoCWgPQwg7GLFPAMXdv5SGlFKUaBVLMmgWR0Cyoh+pCKJmdX2UKGgGaAloD0MI9tIUAU7v1r+UhpRSlGgVSzJoFkdAsqNvEYO2A3V9lChoBmgJaA9DCINMMnIW9ti/lIaUUpRoFUsyaBZHQLKjUXO4XoF1fZQoaAZoCWgPQwhTlEvjF17Uv5SGlFKUaBVLMmgWR0CyoywtFrmAdX2UKGgGaAloD0MI1T2yuWqe37+UhpRSlGgVSzJoFkdAsqMOJ1q33HV9lChoBmgJaA9DCPuw3qgVptW/lIaUUpRoFUsyaBZHQLKkATNMXad1fZQoaAZoCWgPQwgCYhIu5BHUv5SGlFKUaBVLMmgWR0Cyo+OvllshdX2UKGgGaAloD0MIby9pjNZR1b+UhpRSlGgVSzJoFkdAsqO+XmeUZHV9lChoBmgJaA9DCA3fwrrx7uC/lIaUUpRoFUsyaBZHQLKjoGkep4t1fZQoaAZoCWgPQwiJJlDEIobgv5SGlFKUaBVLMmgWR0CypI6nWJ7+dX2UKGgGaAloD0MIHsTOFDqvxb+UhpRSlGgVSzJoFkdAsqRxHd43WHV9lChoBmgJaA9DCE5GlWHcDdy/lIaUUpRoFUsyaBZHQLKkS84gieN1fZQoaAZoCWgPQwjtSWBzDh7iv5SGlFKUaBVLMmgWR0CypC3kcS5BdX2UKGgGaAloD0MIq1yo/Gt547+UhpRSlGgVSzJoFkdAsqUcsoUi6nV9lChoBmgJaA9DCLO0U3O5wdO/lIaUUpRoFUsyaBZHQLKk/yS3b211fZQoaAZoCWgPQwiF0EGXcOjUv5SGlFKUaBVLMmgWR0CypNnkgfU4dX2UKGgGaAloD0MIFf93RIXq0r+UhpRSlGgVSzJoFkdAsqS79rGipXV9lChoBmgJaA9DCA6D+StkrsS/lIaUUpRoFUsyaBZHQLKlrkK/mDF1fZQoaAZoCWgPQwjg2omSkEjWv5SGlFKUaBVLMmgWR0CypZCkfs/qdX2UKGgGaAloD0MIWB6kp8ghyL+UhpRSlGgVSzJoFkdAsqVrThHby3V9lChoBmgJaA9DCIbijjf5LeC/lIaUUpRoFUsyaBZHQLKlTVqesgd1fZQoaAZoCWgPQwi53jZTIR7av5SGlFKUaBVLMmgWR0CypjuiJwbVdX2UKGgGaAloD0MIfsNEgxQ80L+UhpRSlGgVSzJoFkdAsqYeIInjQ3V9lChoBmgJaA9DCNdP/1nz49K/lIaUUpRoFUsyaBZHQLKl+N/e+Eh1fZQoaAZoCWgPQwirl99pMuPgv5SGlFKUaBVLMmgWR0Cypdrd8Aq/dX2UKGgGaAloD0MIbVUS2QdZ1r+UhpRSlGgVSzJoFkdAsqbMmUnogXV9lChoBmgJaA9DCDnv/+OECdm/lIaUUpRoFUsyaBZHQLKmrwkxASp1fZQoaAZoCWgPQwidLLXeb7TZv5SGlFKUaBVLMmgWR0CypomnbZezdX2UKGgGaAloD0MI4Q1pVOBk2L+UhpRSlGgVSzJoFkdAsqZru4PPLXV9lChoBmgJaA9DCA/SU+QQccW/lIaUUpRoFUsyaBZHQLKnceC04R51fZQoaAZoCWgPQwgaGeQuwhTZv5SGlFKUaBVLMmgWR0Cyp1RAv+OwdX2UKGgGaAloD0MIcvxQacTM5L+UhpRSlGgVSzJoFkdAsqcvYYixFHV9lChoBmgJaA9DCOtztRX7y9y/lIaUUpRoFUsyaBZHQLKnEVbA1vV1fZQoaAZoCWgPQwiet7HZkerXv5SGlFKUaBVLMmgWR0CyqAOT7l7udX2UKGgGaAloD0MIRzgteNFXxr+UhpRSlGgVSzJoFkdAsqfmDRMN+nV9lChoBmgJaA9DCIaqmEo/4da/lIaUUpRoFUsyaBZHQLKnwNC7btZ1fZQoaAZoCWgPQwhIaqFkcmrav5SGlFKUaBVLMmgWR0Cyp6LZamoBdX2UKGgGaAloD0MIyjSaXIyB3r+UhpRSlGgVSzJoFkdAsqiawV0tAnV9lChoBmgJaA9DCLCsNCkF3de/lIaUUpRoFUsyaBZHQLKofRSxZ+x1fZQoaAZoCWgPQwgNjLysiQXEv5SGlFKUaBVLMmgWR0CyqFfNmlImdX2UKGgGaAloD0MIlUc3wqIi0L+UhpRSlGgVSzJoFkdAsqg54JNTLnV9lChoBmgJaA9DCD3UtmEUBNW/lIaUUpRoFUsyaBZHQLKpK6WgOBl1fZQoaAZoCWgPQwjACYUIOATgv5SGlFKUaBVLMmgWR0CyqQ4PXkHVdX2UKGgGaAloD0MIz4dnCTICzL+UhpRSlGgVSzJoFkdAsqjotDlYEHV9lChoBmgJaA9DCKLxRBDnYeC/lIaUUpRoFUsyaBZHQLKoysEaESN1fZQoaAZoCWgPQwg82c2MfjTQv5SGlFKUaBVLMmgWR0CyqcyuMdcTdX2UKGgGaAloD0MIuyakNQYd4b+UhpRSlGgVSzJoFkdAsqmvdM0xd3V9lChoBmgJaA9DCBzTE5Z4QMu/lIaUUpRoFUsyaBZHQLKpijiXIEN1fZQoaAZoCWgPQwhpw2Fp4Efcv5SGlFKUaBVLMmgWR0CyqWwnhKlIdX2UKGgGaAloD0MIqfV+ox032L+UhpRSlGgVSzJoFkdAsqpew9q1xHV9lChoBmgJaA9DCLkcr0D0pNC/lIaUUpRoFUsyaBZHQLKqQUJfICF1fZQoaAZoCWgPQwh40y07xD+4v5SGlFKUaBVLMmgWR0CyqhwC8vmHdX2UKGgGaAloD0MIU5W2uMZn2b+UhpRSlGgVSzJoFkdAsqn+HaewtHV9lChoBmgJaA9DCHeC/de5acO/lIaUUpRoFUsyaBZHQLKrAA0Kqn51fZQoaAZoCWgPQwh6GcVySyvgv5SGlFKUaBVLMmgWR0CyquLel9BsdX2UKGgGaAloD0MIQ3QIHAk00b+UhpRSlGgVSzJoFkdAsqq9nCfpU3V9lChoBmgJaA9DCGuA0lCjkNe/lIaUUpRoFUsyaBZHQLKqn6/IsAh1ZS4="
62
  },
63
  "ep_success_buffer": {
64
  ":type:": "<class 'collections.deque'>",
65
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
66
  },
67
+ "_n_updates": 75000,
68
  "n_steps": 5,
69
  "gamma": 0.99,
70
+ "gae_lambda": 0.9,
71
  "ent_coef": 0.0,
72
  "vf_coef": 0.5,
73
  "max_grad_norm": 0.5,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c5314cf6c1cd4a5e7de88b788912840156048a7ed92b04b810dd20225bd5e7a0
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:638a5629cfd4b95e95c15468b31050779ea376f5832968b4675c349e3131e79c
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8276d0bca8342f4ffb0da4f7f882a0c72fca8face7ebf332fab411db1d90e04
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27a96c1c8319e1c6986c5b61f78276d81adc563091f6f320d0ded1d5d27f1487
3
+ size 46718
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3b6dca3d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b6dca5900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681672713055806020, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZAfFPr4Pn718LAU/ZAfFPr4Pn718LAU/ZAfFPr4Pn718LAU/ZAfFPr4Pn718LAU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3wH0u6WBAb/RNEO/WETRPzBw1L+2b6g+khsGv0Rn2T8U/vc+XOxPvww9ur952qI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDxkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDxkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDxkB8U+vg+fvXwsBT88iYI8aNQYvIvzXDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.384822 -0.07766674 0.52021 ]\n [ 0.384822 -0.07766674 0.52021 ]\n [ 0.384822 -0.07766674 0.52021 ]\n [ 0.384822 -0.07766674 0.52021 ]]", "desired_goal": "[[-0.00744651 -0.50588447 -0.76252466]\n [ 1.6348982 -1.6596737 0.3289773 ]\n [-0.5238582 1.6984639 0.48436034]\n [-0.8122003 -1.454988 1.2722923 ]]", "observation": "[[ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]\n [ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]\n [ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]\n [ 0.384822 -0.07766674 0.52021 0.01593458 -0.00932799 0.0134858 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGXUQPkTnQzwHCFs7QYqjvciB1D1TCoM+1Q3vvcGACT5Vg5U+CnnmPcwwCD1AqGM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14107169 0.01195699 0.00334215]\n [-0.07985354 0.10376316 0.25593814]\n [-0.1167256 0.13428022 0.2920176 ]\n [ 0.11253555 0.03324966 0.22232151]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInDI334jOFsCUhpRSlIwBbJRLMowBdJRHQKcSF2dupCN1fZQoaAZoCWgPQwjOVIhH4gUTwJSGlFKUaBVLMmgWR0CnEb9m6GxmdX2UKGgGaAloD0MIYtf2dktCHMCUhpRSlGgVSzJoFkdApxFhky1uznV9lChoBmgJaA9DCNgrLLgfYBfAlIaUUpRoFUsyaBZHQKcRDHRTjvN1fZQoaAZoCWgPQwjl0Y2wqFgWwJSGlFKUaBVLMmgWR0CnEwaLXL/0dX2UKGgGaAloD0MITdcTXRfuFsCUhpRSlGgVSzJoFkdApxKukP+XJHV9lChoBmgJaA9DCJuPa0PF6BbAlIaUUpRoFUsyaBZHQKcSUL8aXKN1fZQoaAZoCWgPQwg9SE+RQ4QYwJSGlFKUaBVLMmgWR0CnEfu7YkE+dX2UKGgGaAloD0MI0c5pFmjHHcCUhpRSlGgVSzJoFkdApxPnmDDjznV9lChoBmgJaA9DCB7htOBFXxfAlIaUUpRoFUsyaBZHQKcTj5X2dup1fZQoaAZoCWgPQwj1L0llipkTwJSGlFKUaBVLMmgWR0CnEzIC+10DdX2UKGgGaAloD0MId/UqMjqQGsCUhpRSlGgVSzJoFkdApxLdS619fHV9lChoBmgJaA9DCK6gaYmV0RDAlIaUUpRoFUsyaBZHQKcUwi22G7B1fZQoaAZoCWgPQwjT2jS21/IZwJSGlFKUaBVLMmgWR0CnFGois4kvdX2UKGgGaAloD0MIswsG19wREcCUhpRSlGgVSzJoFkdApxQMYEW69XV9lChoBmgJaA9DCHGvzFt1DRTAlIaUUpRoFUsyaBZHQKcTtz8xbjd1fZQoaAZoCWgPQwhOX8/XLAcUwJSGlFKUaBVLMmgWR0CnFe1EE1VHdX2UKGgGaAloD0MI2/0qwHc7FcCUhpRSlGgVSzJoFkdApxWWMQ2/BXV9lChoBmgJaA9DCHI3iNaKFh3AlIaUUpRoFUsyaBZHQKcVOR8twrF1fZQoaAZoCWgPQwhjYYicvr4SwJSGlFKUaBVLMmgWR0CnFOTU7Sy/dX2UKGgGaAloD0MI+tFwytycDcCUhpRSlGgVSzJoFkdApxdbIFNcnnV9lChoBmgJaA9DCCfcK/NWTSLAlIaUUpRoFUsyaBZHQKcXA6oVEeB1fZQoaAZoCWgPQwhjm1Q01l4WwJSGlFKUaBVLMmgWR0CnFqZu63AmdX2UKGgGaAloD0MIoOHNGrx/FMCUhpRSlGgVSzJoFkdApxZSADq4Y3V9lChoBmgJaA9DCEPKT6p9ug/AlIaUUpRoFUsyaBZHQKcYxpJwsGx1fZQoaAZoCWgPQwjsh9hg4SQRwJSGlFKUaBVLMmgWR0CnGG8f3evZdX2UKGgGaAloD0MIzEOmfAh6FcCUhpRSlGgVSzJoFkdApxgR+WnjyXV9lChoBmgJaA9DCI7lXfWAmRDAlIaUUpRoFUsyaBZHQKcXvWsA/9p1fZQoaAZoCWgPQwjnps04DbETwJSGlFKUaBVLMmgWR0CnGkoJqqOtdX2UKGgGaAloD0MI9PkoIy6QGMCUhpRSlGgVSzJoFkdApxnyrHU+cHV9lChoBmgJaA9DCIgRwqONYxPAlIaUUpRoFUsyaBZHQKcZlbwBo251fZQoaAZoCWgPQwhVppiDoMMbwJSGlFKUaBVLMmgWR0CnGUFI/Z/TdX2UKGgGaAloD0MIWwuz0M6JGsCUhpRSlGgVSzJoFkdApxvIevIOpnV9lChoBmgJaA9DCDi+9sySYBPAlIaUUpRoFUsyaBZHQKcbcYqG1x91fZQoaAZoCWgPQwh0sz9QbtsYwJSGlFKUaBVLMmgWR0CnGxTGxUvPdX2UKGgGaAloD0MILXx9rUsNC8CUhpRSlGgVSzJoFkdApxrAV9F4LXV9lChoBmgJaA9DCMP1KFyPMhjAlIaUUpRoFUsyaBZHQKcdcTyrgfl1fZQoaAZoCWgPQwhwW1t4XtoawJSGlFKUaBVLMmgWR0CnHRq8tf5UdX2UKGgGaAloD0MIkNlZ9E6VFMCUhpRSlGgVSzJoFkdApxy9mQKa5XV9lChoBmgJaA9DCPWCT3PywgnAlIaUUpRoFUsyaBZHQKccaW3z+WJ1fZQoaAZoCWgPQwj4UQ37PTEbwJSGlFKUaBVLMmgWR0CnHlOhbnoxdX2UKGgGaAloD0MIj4tqEVE8FMCUhpRSlGgVSzJoFkdApx37nJT2nXV9lChoBmgJaA9DCKD+s+bH3xzAlIaUUpRoFUsyaBZHQKcdne40/GF1fZQoaAZoCWgPQwgC02ndBsUgwJSGlFKUaBVLMmgWR0CnHUjLKV6edX2UKGgGaAloD0MIWeAruvX6DcCUhpRSlGgVSzJoFkdApx9Ackt293V9lChoBmgJaA9DCHnr/Ntl3yDAlIaUUpRoFUsyaBZHQKce6HB1s+F1fZQoaAZoCWgPQwhnRdREn+8VwJSGlFKUaBVLMmgWR0CnHoq9oN/fdX2UKGgGaAloD0MImu51Ul8WFMCUhpRSlGgVSzJoFkdApx41ygf2b3V9lChoBmgJaA9DCODVcmcmqCDAlIaUUpRoFUsyaBZHQKcgGl8gIQh1fZQoaAZoCWgPQwjMfAc/cSAWwJSGlFKUaBVLMmgWR0CnH8JaaCtjdX2UKGgGaAloD0MIqMR1jCsuFsCUhpRSlGgVSzJoFkdApx9klHBk7XV9lChoBmgJaA9DCKMHPgYrjiDAlIaUUpRoFUsyaBZHQKcfD3Cbc451fZQoaAZoCWgPQwhXI7vSMgogwJSGlFKUaBVLMmgWR0CnIPh3A2ycdX2UKGgGaAloD0MIFEGchxM4F8CUhpRSlGgVSzJoFkdApyCgzDXOGHV9lChoBmgJaA9DCPePhegQmBfAlIaUUpRoFUsyaBZHQKcgQyKNyYJ1fZQoaAZoCWgPQwiIE5hO6wYewJSGlFKUaBVLMmgWR0CnH+4cm0E6dX2UKGgGaAloD0MI6q7sgsG1IMCUhpRSlGgVSzJoFkdApyHTnLaEjHV9lChoBmgJaA9DCKtefqfJ/BvAlIaUUpRoFUsyaBZHQKche6Oo5xR1fZQoaAZoCWgPQwhXQndJnJUXwJSGlFKUaBVLMmgWR0CnIR3fZVXFdX2UKGgGaAloD0MI3795ceKbIMCUhpRSlGgVSzJoFkdApyDI1+AmRnV9lChoBmgJaA9DCKezk8FRAh7AlIaUUpRoFUsyaBZHQKciztFa0Qd1fZQoaAZoCWgPQwhauKzCZoAXwJSGlFKUaBVLMmgWR0CnInbYkE9udX2UKGgGaAloD0MImYHK+PepE8CUhpRSlGgVSzJoFkdApyIZXQtz0nV9lChoBmgJaA9DCPThWYKMABfAlIaUUpRoFUsyaBZHQKchxES/TLJ1fZQoaAZoCWgPQwhPrFPle0YZwJSGlFKUaBVLMmgWR0CnI7f1HvtudX2UKGgGaAloD0MIr2Ab8WSHGMCUhpRSlGgVSzJoFkdApyNgAGSpznV9lChoBmgJaA9DCFG+oIUExCLAlIaUUpRoFUsyaBZHQKcjAmOU+s51fZQoaAZoCWgPQwhZi08BMP4XwJSGlFKUaBVLMmgWR0CnIq1YISlFdX2UKGgGaAloD0MIsqGb/YGiI8CUhpRSlGgVSzJoFkdApySbxgAp8XV9lChoBmgJaA9DCAbZsnxdhgrAlIaUUpRoFUsyaBZHQKckRAKOT7l1fZQoaAZoCWgPQwjE0OrkDDUTwJSGlFKUaBVLMmgWR0CnI+aInBtUdX2UKGgGaAloD0MI7Ny0GafhEcCUhpRSlGgVSzJoFkdApyORYq5LAnV9lChoBmgJaA9DCOxph78mqyXAlIaUUpRoFUsyaBZHQKcleS4e9zx1fZQoaAZoCWgPQwjPLAlQU2sbwJSGlFKUaBVLMmgWR0CnJSFK9PDYdX2UKGgGaAloD0MIAz+qYb/3G8CUhpRSlGgVSzJoFkdApyTDhxYJV3V9lChoBmgJaA9DCHhi1ouhjBjAlIaUUpRoFUsyaBZHQKckbmU4aP11fZQoaAZoCWgPQwhha7bykt8awJSGlFKUaBVLMmgWR0CnJlZPEbYLdX2UKGgGaAloD0MIyY6NQLxeGMCUhpRSlGgVSzJoFkdApyX+R/3Fk3V9lChoBmgJaA9DCCaL+49MtxDAlIaUUpRoFUsyaBZHQKcloKHfuTl1fZQoaAZoCWgPQwgs9SwI5Q0TwJSGlFKUaBVLMmgWR0CnJUuryUcGdX2UKGgGaAloD0MITtL8Ma2NEMCUhpRSlGgVSzJoFkdApydBq0tyxXV9lChoBmgJaA9DCCEeiZenwyDAlIaUUpRoFUsyaBZHQKcm6ez2OAB1fZQoaAZoCWgPQwgDQYAMHasgwJSGlFKUaBVLMmgWR0CnJowlKK51dX2UKGgGaAloD0MIgxlTsMb5G8CUhpRSlGgVSzJoFkdApyY3B55Z83V9lChoBmgJaA9DCJkR3h6EgCDAlIaUUpRoFUsyaBZHQKcoH9y925h1fZQoaAZoCWgPQwgipkQSvTQkwJSGlFKUaBVLMmgWR0CnJ8fOMVDbdX2UKGgGaAloD0MILLZJRWNtEsCUhpRSlGgVSzJoFkdApydqO3lS0nV9lChoBmgJaA9DCLZnlgSo2RjAlIaUUpRoFUsyaBZHQKcnFRO1v2p1fZQoaAZoCWgPQwjwaU5eZEIhwJSGlFKUaBVLMmgWR0CnKQyyt3fRdX2UKGgGaAloD0MIg6W6gJcJEsCUhpRSlGgVSzJoFkdApyi0uQIUrXV9lChoBmgJaA9DCHdLcsCuJgnAlIaUUpRoFUsyaBZHQKcoVyy2QXB1fZQoaAZoCWgPQwh3n+OjxVkXwJSGlFKUaBVLMmgWR0CnKAIhY/3WdX2UKGgGaAloD0MIE2OZfonwIsCUhpRSlGgVSzJoFkdApyn1fJFLFnV9lChoBmgJaA9DCOPFwhA53RjAlIaUUpRoFUsyaBZHQKcpnZs9B8h1fZQoaAZoCWgPQwhl4lZBDLwhwJSGlFKUaBVLMmgWR0CnKUAte2NOdX2UKGgGaAloD0MIDcLc7uVeC8CUhpRSlGgVSzJoFkdApyjrSXt0FXV9lChoBmgJaA9DCDoCuFm86BPAlIaUUpRoFUsyaBZHQKcqzXiBGx51fZQoaAZoCWgPQwgRbjKqDFMZwJSGlFKUaBVLMmgWR0CnKnWPDHfedX2UKGgGaAloD0MIW3wKgPFcEMCUhpRSlGgVSzJoFkdApyoYM+eOGXV9lChoBmgJaA9DCLh3DfrSmxjAlIaUUpRoFUsyaBZHQKcpwxSpBHF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5085f13700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5085f11800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681750833194868209, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/tgDXPuVn9TxBUQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8GwP9S+LD9k7AS/InuqP0SjbD9Yuto/OXuYv+4kgb8M07C+9u14vmxyij+2j0i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjy2ANc+5Wf1PEFRBj+1Rsc8CPw+O7TVrjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]\n [0.4199273 0.02995677 0.52467734]]", "desired_goal": "[[ 1.3809084 0.6747868 -0.51923203]\n [ 1.3318827 0.92436624 1.7088118 ]\n [-1.1912605 -1.0089395 -0.34536016]\n [-0.24309525 1.0816169 -0.78344285]]", "observation": "[[0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]\n [0.4199273 0.02995677 0.52467734 0.02432571 0.00291419 0.02134214]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhzIDvqYP3r2I58g9ayrJvYUwoD1LJOY81zMbO/N4jb00xK49L84NviYRpjrb/Do+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12812243 -0.10842828 0.09809786]\n [-0.09822544 0.07821754 0.02809348]\n [ 0.0023682 -0.06907835 0.08533517]\n [-0.13848184 0.00126699 0.18260519]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIea7vw0FC07+UhpRSlIwBbJRLMowBdJRHQLKbBpnHvMN1fZQoaAZoCWgPQwi1/pYA/FPYv5SGlFKUaBVLMmgWR0Cymuj5wfhddX2UKGgGaAloD0MI9u0kIvyLzr+UhpRSlGgVSzJoFkdAsprDvfCQ93V9lChoBmgJaA9DCL5qZcIv9cm/lIaUUpRoFUsyaBZHQLKapdU83dd1fZQoaAZoCWgPQwjT25+Lhozhv5SGlFKUaBVLMmgWR0Cym5yi22G7dX2UKGgGaAloD0MIQnbexmZH1r+UhpRSlGgVSzJoFkdAspt/ILgGbHV9lChoBmgJaA9DCMbCEDl9Pcu/lIaUUpRoFUsyaBZHQLKbWeEIw/R1fZQoaAZoCWgPQwjd66S+LO3Iv5SGlFKUaBVLMmgWR0CymzvxhDw6dX2UKGgGaAloD0MIGhh5WRML3L+UhpRSlGgVSzJoFkdAspws7dSEUXV9lChoBmgJaA9DCNdMvtnmxtO/lIaUUpRoFUsyaBZHQLKcD1gYxcp1fZQoaAZoCWgPQwigUbr0L0nfv5SGlFKUaBVLMmgWR0Cym+ny3CsPdX2UKGgGaAloD0MIZOWXwRiR0b+UhpRSlGgVSzJoFkdAspvL8EV32XV9lChoBmgJaA9DCJ5cUyCzs9C/lIaUUpRoFUsyaBZHQLKcwPYWcjJ1fZQoaAZoCWgPQwipMSHmkqrbv5SGlFKUaBVLMmgWR0CynKNxZMcqdX2UKGgGaAloD0MIWI0lrI2x0r+UhpRSlGgVSzJoFkdAspx+FoL5RHV9lChoBmgJaA9DCHgI46dxb8a/lIaUUpRoFUsyaBZHQLKcYCIDYAd1fZQoaAZoCWgPQwhtNlZinpXRv5SGlFKUaBVLMmgWR0CynVazJIUbdX2UKGgGaAloD0MI/x8nTBjN1b+UhpRSlGgVSzJoFkdAsp05Nh3JP3V9lChoBmgJaA9DCIqT+x2KAs+/lIaUUpRoFUsyaBZHQLKdE/p+tr91fZQoaAZoCWgPQwhrYRbaOc3Uv5SGlFKUaBVLMmgWR0CynPXo1UEQdX2UKGgGaAloD0MIo87cQ8L33L+UhpRSlGgVSzJoFkdAsp3m8dxQznV9lChoBmgJaA9DCAQfgxWn2uC/lIaUUpRoFUsyaBZHQLKdyWGh24d1fZQoaAZoCWgPQwj5ugz/6Ybgv5SGlFKUaBVLMmgWR0CynaQZsKsudX2UKGgGaAloD0MInrEv2Xiw1L+UhpRSlGgVSzJoFkdAsp2GI7/4qXV9lChoBmgJaA9DCHcSEf5F0NK/lIaUUpRoFUsyaBZHQLKek3Lmp2l1fZQoaAZoCWgPQwjVtItppnvWv5SGlFKUaBVLMmgWR0CynnZI+W4WdX2UKGgGaAloD0MIwY7/AkGA0b+UhpRSlGgVSzJoFkdAsp5RXLeQ+3V9lChoBmgJaA9DCA2OklfnGNm/lIaUUpRoFUsyaBZHQLKeM83dbgV1fZQoaAZoCWgPQwj7H2Ct2jXLv5SGlFKUaBVLMmgWR0Cyn52EPDpDdX2UKGgGaAloD0MI+84vStBf4r+UhpRSlGgVSzJoFkdAsp+BREWqLnV9lChoBmgJaA9DCPz+zYsTX9K/lIaUUpRoFUsyaBZHQLKfXIBBAwB1fZQoaAZoCWgPQwhsPxnjw+zav5SGlFKUaBVLMmgWR0Cynz8IAwPAdX2UKGgGaAloD0MIoBuastMP07+UhpRSlGgVSzJoFkdAsqCQTwlSj3V9lChoBmgJaA9DCKWhRiHJrNq/lIaUUpRoFUsyaBZHQLKgcyfcvdx1fZQoaAZoCWgPQwjhC5OpglHJv5SGlFKUaBVLMmgWR0CyoE5EH+qBdX2UKGgGaAloD0MISkBMwoU8yr+UhpRSlGgVSzJoFkdAsqAwyKvV3HV9lChoBmgJaA9DCOS9amXCL9u/lIaUUpRoFUsyaBZHQLKhi1XvH951fZQoaAZoCWgPQwiAn3HhQEjQv5SGlFKUaBVLMmgWR0CyoW482aUidX2UKGgGaAloD0MIlPlH36Rp1r+UhpRSlGgVSzJoFkdAsqFJZV4oqnV9lChoBmgJaA9DCNz0Zz9SxOC/lIaUUpRoFUsyaBZHQLKhK/qgRK91fZQoaAZoCWgPQwgY0XZM3ZXRv5SGlFKUaBVLMmgWR0Cyon9/axoqdX2UKGgGaAloD0MIl299WG/U0L+UhpRSlGgVSzJoFkdAsqJiZZ0Sy3V9lChoBmgJaA9DCLGlR1M9mdS/lIaUUpRoFUsyaBZHQLKiPUPhAGB1fZQoaAZoCWgPQwg7GLFPAMXdv5SGlFKUaBVLMmgWR0Cyoh+pCKJmdX2UKGgGaAloD0MI9tIUAU7v1r+UhpRSlGgVSzJoFkdAsqNvEYO2A3V9lChoBmgJaA9DCINMMnIW9ti/lIaUUpRoFUsyaBZHQLKjUXO4XoF1fZQoaAZoCWgPQwhTlEvjF17Uv5SGlFKUaBVLMmgWR0CyoywtFrmAdX2UKGgGaAloD0MI1T2yuWqe37+UhpRSlGgVSzJoFkdAsqMOJ1q33HV9lChoBmgJaA9DCPuw3qgVptW/lIaUUpRoFUsyaBZHQLKkATNMXad1fZQoaAZoCWgPQwgCYhIu5BHUv5SGlFKUaBVLMmgWR0Cyo+OvllshdX2UKGgGaAloD0MIby9pjNZR1b+UhpRSlGgVSzJoFkdAsqO+XmeUZHV9lChoBmgJaA9DCA3fwrrx7uC/lIaUUpRoFUsyaBZHQLKjoGkep4t1fZQoaAZoCWgPQwiJJlDEIobgv5SGlFKUaBVLMmgWR0CypI6nWJ7+dX2UKGgGaAloD0MIHsTOFDqvxb+UhpRSlGgVSzJoFkdAsqRxHd43WHV9lChoBmgJaA9DCE5GlWHcDdy/lIaUUpRoFUsyaBZHQLKkS84gieN1fZQoaAZoCWgPQwjtSWBzDh7iv5SGlFKUaBVLMmgWR0CypC3kcS5BdX2UKGgGaAloD0MIq1yo/Gt547+UhpRSlGgVSzJoFkdAsqUcsoUi6nV9lChoBmgJaA9DCLO0U3O5wdO/lIaUUpRoFUsyaBZHQLKk/yS3b211fZQoaAZoCWgPQwiF0EGXcOjUv5SGlFKUaBVLMmgWR0CypNnkgfU4dX2UKGgGaAloD0MIFf93RIXq0r+UhpRSlGgVSzJoFkdAsqS79rGipXV9lChoBmgJaA9DCA6D+StkrsS/lIaUUpRoFUsyaBZHQLKlrkK/mDF1fZQoaAZoCWgPQwjg2omSkEjWv5SGlFKUaBVLMmgWR0CypZCkfs/qdX2UKGgGaAloD0MIWB6kp8ghyL+UhpRSlGgVSzJoFkdAsqVrThHby3V9lChoBmgJaA9DCIbijjf5LeC/lIaUUpRoFUsyaBZHQLKlTVqesgd1fZQoaAZoCWgPQwi53jZTIR7av5SGlFKUaBVLMmgWR0CypjuiJwbVdX2UKGgGaAloD0MIfsNEgxQ80L+UhpRSlGgVSzJoFkdAsqYeIInjQ3V9lChoBmgJaA9DCNdP/1nz49K/lIaUUpRoFUsyaBZHQLKl+N/e+Eh1fZQoaAZoCWgPQwirl99pMuPgv5SGlFKUaBVLMmgWR0Cypdrd8Aq/dX2UKGgGaAloD0MIbVUS2QdZ1r+UhpRSlGgVSzJoFkdAsqbMmUnogXV9lChoBmgJaA9DCDnv/+OECdm/lIaUUpRoFUsyaBZHQLKmrwkxASp1fZQoaAZoCWgPQwidLLXeb7TZv5SGlFKUaBVLMmgWR0CypomnbZezdX2UKGgGaAloD0MI4Q1pVOBk2L+UhpRSlGgVSzJoFkdAsqZru4PPLXV9lChoBmgJaA9DCA/SU+QQccW/lIaUUpRoFUsyaBZHQLKnceC04R51fZQoaAZoCWgPQwgaGeQuwhTZv5SGlFKUaBVLMmgWR0Cyp1RAv+OwdX2UKGgGaAloD0MIcvxQacTM5L+UhpRSlGgVSzJoFkdAsqcvYYixFHV9lChoBmgJaA9DCOtztRX7y9y/lIaUUpRoFUsyaBZHQLKnEVbA1vV1fZQoaAZoCWgPQwiet7HZkerXv5SGlFKUaBVLMmgWR0CyqAOT7l7udX2UKGgGaAloD0MIRzgteNFXxr+UhpRSlGgVSzJoFkdAsqfmDRMN+nV9lChoBmgJaA9DCIaqmEo/4da/lIaUUpRoFUsyaBZHQLKnwNC7btZ1fZQoaAZoCWgPQwhIaqFkcmrav5SGlFKUaBVLMmgWR0Cyp6LZamoBdX2UKGgGaAloD0MIyjSaXIyB3r+UhpRSlGgVSzJoFkdAsqiawV0tAnV9lChoBmgJaA9DCLCsNCkF3de/lIaUUpRoFUsyaBZHQLKofRSxZ+x1fZQoaAZoCWgPQwgNjLysiQXEv5SGlFKUaBVLMmgWR0CyqFfNmlImdX2UKGgGaAloD0MIlUc3wqIi0L+UhpRSlGgVSzJoFkdAsqg54JNTLnV9lChoBmgJaA9DCD3UtmEUBNW/lIaUUpRoFUsyaBZHQLKpK6WgOBl1fZQoaAZoCWgPQwjACYUIOATgv5SGlFKUaBVLMmgWR0CyqQ4PXkHVdX2UKGgGaAloD0MIz4dnCTICzL+UhpRSlGgVSzJoFkdAsqjotDlYEHV9lChoBmgJaA9DCKLxRBDnYeC/lIaUUpRoFUsyaBZHQLKoysEaESN1fZQoaAZoCWgPQwg82c2MfjTQv5SGlFKUaBVLMmgWR0CyqcyuMdcTdX2UKGgGaAloD0MIuyakNQYd4b+UhpRSlGgVSzJoFkdAsqmvdM0xd3V9lChoBmgJaA9DCBzTE5Z4QMu/lIaUUpRoFUsyaBZHQLKpijiXIEN1fZQoaAZoCWgPQwhpw2Fp4Efcv5SGlFKUaBVLMmgWR0CyqWwnhKlIdX2UKGgGaAloD0MIqfV+ox032L+UhpRSlGgVSzJoFkdAsqpew9q1xHV9lChoBmgJaA9DCLkcr0D0pNC/lIaUUpRoFUsyaBZHQLKqQUJfICF1fZQoaAZoCWgPQwh40y07xD+4v5SGlFKUaBVLMmgWR0CyqhwC8vmHdX2UKGgGaAloD0MIU5W2uMZn2b+UhpRSlGgVSzJoFkdAsqn+HaewtHV9lChoBmgJaA9DCHeC/de5acO/lIaUUpRoFUsyaBZHQLKrAA0Kqn51fZQoaAZoCWgPQwh6GcVySyvgv5SGlFKUaBVLMmgWR0CyquLel9BsdX2UKGgGaAloD0MIQ3QIHAk00b+UhpRSlGgVSzJoFkdAsqq9nCfpU3V9lChoBmgJaA9DCGuA0lCjkNe/lIaUUpRoFUsyaBZHQLKqn6/IsAh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -6.971109299175441, "std_reward": 1.9956132377524642, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T20:15:53.477564"}
 
1
+ {"mean_reward": -0.3721611718487111, "std_reward": 0.16615717830778415, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T18:20:16.161741"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94561adc9ab446cb25358ce94e08abb51ff6c736255d8e580f0c32881e73fe41
3
  size 2381
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3edcbb5adefb588d8a5ed99cc463505e5948a80a93afa8fc03dc7c3ba66f1604
3
  size 2381