SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 9 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
schedule_a_visit |
|
check_availability |
|
amenities_and_features |
|
payment_plan |
|
reservation_process |
|
location_details |
|
pricing_details |
|
option_process |
|
information_on_projects |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("ali170506/chab")
# Run inference
preds = model("Is it available?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 5.2222 | 8 |
Label | Training Sample Count |
---|---|
information_on_projects | 3 |
pricing_details | 3 |
location_details | 3 |
amenities_and_features | 3 |
check_availability | 3 |
schedule_a_visit | 3 |
reservation_process | 3 |
option_process | 3 |
payment_plan | 3 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0062 | 1 | 0.0311 | - |
0.0617 | 10 | 0.0989 | - |
0.1235 | 20 | 0.0036 | - |
0.1852 | 30 | 0.0121 | - |
0.2469 | 40 | 0.0209 | - |
0.3086 | 50 | 0.001 | - |
0.3704 | 60 | 0.0067 | - |
0.4321 | 70 | 0.017 | - |
0.4938 | 80 | 0.0037 | - |
0.5556 | 90 | 0.012 | - |
0.6173 | 100 | 0.0009 | - |
0.6790 | 110 | 0.0044 | - |
0.7407 | 120 | 0.0014 | - |
0.8025 | 130 | 0.0006 | - |
0.8642 | 140 | 0.0016 | - |
0.9259 | 150 | 0.0024 | - |
0.9877 | 160 | 0.0011 | - |
1.0 | 162 | - | 0.0164 |
1.0494 | 170 | 0.0019 | - |
1.1111 | 180 | 0.0017 | - |
1.1728 | 190 | 0.0004 | - |
1.2346 | 200 | 0.0008 | - |
1.2963 | 210 | 0.0012 | - |
1.3580 | 220 | 0.0009 | - |
1.4198 | 230 | 0.0006 | - |
1.4815 | 240 | 0.001 | - |
1.5432 | 250 | 0.0009 | - |
1.6049 | 260 | 0.0015 | - |
1.6667 | 270 | 0.0016 | - |
1.7284 | 280 | 0.0009 | - |
1.7901 | 290 | 0.0005 | - |
1.8519 | 300 | 0.0009 | - |
1.9136 | 310 | 0.0009 | - |
1.9753 | 320 | 0.0008 | - |
2.0 | 324 | - | 0.0138 |
2.0370 | 330 | 0.0011 | - |
2.0988 | 340 | 0.0016 | - |
2.1605 | 350 | 0.0006 | - |
2.2222 | 360 | 0.0012 | - |
2.2840 | 370 | 0.0014 | - |
2.3457 | 380 | 0.0009 | - |
2.4074 | 390 | 0.0008 | - |
2.4691 | 400 | 0.0003 | - |
2.5309 | 410 | 0.0002 | - |
2.5926 | 420 | 0.0007 | - |
2.6543 | 430 | 0.001 | - |
2.7160 | 440 | 0.0008 | - |
2.7778 | 450 | 0.0008 | - |
2.8395 | 460 | 0.0003 | - |
2.9012 | 470 | 0.0004 | - |
2.9630 | 480 | 0.0003 | - |
3.0 | 486 | - | 0.0129 |
3.0247 | 490 | 0.0013 | - |
3.0864 | 500 | 0.0006 | - |
3.1481 | 510 | 0.0008 | - |
3.2099 | 520 | 0.0001 | - |
3.2716 | 530 | 0.0007 | - |
3.3333 | 540 | 0.0004 | - |
3.3951 | 550 | 0.0004 | - |
3.4568 | 560 | 0.0003 | - |
3.5185 | 570 | 0.0003 | - |
3.5802 | 580 | 0.0002 | - |
3.6420 | 590 | 0.0002 | - |
3.7037 | 600 | 0.0002 | - |
3.7654 | 610 | 0.0007 | - |
3.8272 | 620 | 0.0007 | - |
3.8889 | 630 | 0.0007 | - |
3.9506 | 640 | 0.0003 | - |
4.0 | 648 | - | 0.0129 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.37.0
- PyTorch: 2.4.1+cu121
- Datasets: 3.0.1
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.