albertmartinez's picture
Update metadata with huggingface_hub
f5e3376 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: sdg-bert-base-multilingual-cased-classification
    results:
      - task:
          type: text-classification
          name: text-classification
        dataset:
          name: albertmartinez/OSDG (2024-04-01)
          type: albertmartinez/OSDG
          split: test
        metrics:
          - type: accuracy
            value: 0.7982568274259152
            name: accuracy
            args:
              accuracy: 0.7982568274259152
              total_time_in_seconds: 41.86629699298646
              samples_per_second: 205.53525432262444
              latency_in_seconds: 0.004865345379777625

sdg-bert-base-multilingual-cased-classification

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7135
  • Accuracy: 0.7981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2927 1.0 269 0.8947 0.7515
0.7953 2.0 538 0.7700 0.7795
0.6549 3.0 807 0.7241 0.7937
0.5658 4.0 1076 0.7135 0.7984
0.4799 5.0 1345 0.7142 0.7941

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.6.0+cu118
  • Datasets 2.19.2
  • Tokenizers 0.21.0