metadata
license: mit
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-sdg-classification
results: []
bert-sdg-classification
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6811
- F1: 0.8046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.5106 | 1.0 | 942 | 0.8143 | 0.7668 |
0.7033 | 2.0 | 1884 | 0.6980 | 0.7985 |
0.511 | 3.0 | 2826 | 0.6811 | 0.8046 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1