|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-nvidia |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-nvidia |
|
|
|
Imported from Kaggle (https://www.kaggle.com/datasets/gondimalladeepesh/nvidia-documentation-question-and-answer-pairs) |
|
|
|
Q&A dataset for LLM finetuning about the NVIDIA about SDKs and blogs |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) trained on [ajsbsd/datasets/nvidia-qa](https://huggingface.co/datasets/ajsbsd/nvidia-qa) |
|
|
|
It achieves the following results on the evaluation set: |
|
|
|
- Loss: 2.0857 |
|
- Rouge1: 0.3970 |
|
- Rouge2: 0.2295 |
|
- Rougel: 0.3537 |
|
- Rougelsum: 0.3593 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.8569 | 1.0 | 711 | 2.3454 | 0.3748 | 0.2036 | 0.3321 | 0.3375 | |
|
| 2.5034 | 2.0 | 1422 | 2.2079 | 0.3841 | 0.2143 | 0.3417 | 0.3465 | |
|
| 2.1886 | 3.0 | 2133 | 2.1342 | 0.3900 | 0.2227 | 0.3494 | 0.3543 | |
|
| 2.0784 | 4.0 | 2844 | 2.0972 | 0.3951 | 0.2267 | 0.3522 | 0.3571 | |
|
| 1.9843 | 5.0 | 3555 | 2.0857 | 0.3970 | 0.2295 | 0.3537 | 0.3593 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|