|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-openbsd-faq |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-openbsd-faq |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) fintuned on [ajsbsd/openbsd-faq](https://huggingface.co/datasets/ajsbsd/openbsd-faq) |
|
|
|
These are questions from https://www.openbsd.org/faq/faq1.html for use on [ajsbsd.net](https://ajsbsd.net) |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2385 |
|
- Rouge1: 0.3935 |
|
- Rouge2: 0.3383 |
|
- Rougel: 0.3906 |
|
- Rougelsum: 0.3844 |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) |
|
|
|
## Intended uses & limitations |
|
|
|
OpenBSD Q/A chat-bot. |
|
|
|
## Training and evaluation data |
|
|
|
Questions created from https://www.openbsd.org/faq/faq1.html in Q/A format for text2text generation. |
|
|
|
## Training procedure |
|
|
|
Trained at Google Colab with the following code. |
|
|
|
``` |
|
!pip install -q transformers[torch] tokenizers datasets evaluate rouge_score sentencepiece huggingface_hub --upgrade |
|
|
|
from huggingface_hub import notebook_login |
|
notebook_login() |
|
|
|
import nltk |
|
from datasets import load_dataset |
|
import evaluate |
|
import numpy as np |
|
from transformers import T5Tokenizer, DataCollatorForSeq2Seq |
|
from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer |
|
|
|
# Load and split the dataset |
|
dataset = load_dataset("ajsbsd/openbsd-faq") |
|
dataset = dataset["train"].train_test_split(test_size=0.2) |
|
#dataset = load_dataset("csv", data_files="./JEOPARDY_CSV.csv") |
|
#dataset = dataset["train"].train_test_split(test_size=0.2) |
|
# Load the tokenizer, model, and data collator |
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") |
|
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base") |
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model) |
|
|
|
# We prefix our tasks with "answer the question" |
|
prefix = "Please answer this question: " |
|
|
|
# Define our preprocessing function |
|
def preprocess_function(examples): |
|
"""Add prefix to the sentences, tokenize the text, and set the labels""" |
|
# The "inputs" are the tokenized answer: |
|
inputs = [prefix + doc for doc in examples["question"]] |
|
model_inputs = tokenizer(inputs, max_length=128, truncation=True) |
|
|
|
# The "labels" are the tokenized outputs: |
|
labels = tokenizer(text_target=examples["answer"], max_length=512, truncation=True) |
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
# Map the preprocessing function across our dataset |
|
tokenized_dataset = dataset.map(preprocess_function, batched=True) |
|
|
|
# Set up Rouge score for evaluation |
|
nltk.download("punkt", quiet=True) |
|
metric = evaluate.load("rouge") |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
|
|
# decode preds and labels |
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
# rougeLSum expects newline after each sentence |
|
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds] |
|
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels] |
|
|
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) |
|
return result |
|
|
|
# Set up training arguments |
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="./flan-t5-base-openbsd-faq", |
|
evaluation_strategy="epoch", |
|
learning_rate=3e-4, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=4, |
|
weight_decay=0.01, |
|
save_total_limit=3, |
|
num_train_epochs=5, |
|
predict_with_generate=True, |
|
push_to_hub=False |
|
) |
|
|
|
# Set up trainer |
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["test"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics |
|
) |
|
|
|
# Train the model |
|
trainer.train() |
|
|
|
trainer.push_to_hub() |
|
``` |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| No log | 1.0 | 9 | 2.2184 | 0.3985 | 0.3308 | 0.3878 | 0.3902 | |
|
| No log | 2.0 | 18 | 2.2060 | 0.4044 | 0.3231 | 0.3959 | 0.3937 | |
|
| No log | 3.0 | 27 | 2.2271 | 0.4063 | 0.3315 | 0.4006 | 0.3971 | |
|
| No log | 4.0 | 36 | 2.2251 | 0.4069 | 0.3366 | 0.4001 | 0.3937 | |
|
| No log | 5.0 | 45 | 2.2385 | 0.3935 | 0.3383 | 0.3906 | 0.3844 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.15.0 |
|
|