|
|
|
module attributes { |
|
llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", |
|
llvm.target_triple = "x86_64-unknown-linux-gnu", |
|
"onnx-mlir.symbol-postfix" = "onnxmodel.onnx.mlir", |
|
vaimlconf.device = "stx", |
|
vaimlconf.device_models = "${vaimlconf.install_dir}/data/deviceModels", |
|
vaimlconf.install_dir = "/usr/local/lib/python3.10/dist-packages/flexml/flexml_extras", |
|
vaimlconf.library_metadata = ["${vaimlconf.install_dir}/data/libraryMetadata/L1", "${vaimlconf.install_dir}/data/libraryMetadata/L2", "${vaimlconf.install_dir}/../../vitis_mllib/L1/metadata", "${vaimlconf.install_dir}/../../vitis_mllib/L2/metadata", "${vaimlconf.install_dir}/share/microkernel-tiling/tiling-recipe-specs"], |
|
vaimlconf.single_core_compiler = "chess"} { |
|
func.func @main_graph(%arg0: tensor<1x180x320x4xui8> {onnx.name = "src"} loc(unknown), %arg1: tensor<1x90x160x16xf32> {onnx.name = "r1i"} loc(unknown), %arg2: tensor<1x45x80x20xf32> {onnx.name = "r2i"} loc(unknown), %arg3: tensor<1x23x40x40xf32> {onnx.name = "r3i"} loc(unknown), %arg4: tensor<1x12x20x64xf32> {onnx.name = "r4i"} loc(unknown)) -> (tensor<1x180x320x3xf32> {onnx.name = "fgr"}, tensor<1x180x320x1xf32> {onnx.name = "pha"}, tensor<1x90x160x16xf32> {onnx.name = "r1o"}, tensor<1x45x80x20xf32> {onnx.name = "r2o"}, tensor<1x23x40x40xf32> {onnx.name = "r3o"}, tensor<1x12x20x64xf32> {onnx.name = "r4o"}) { |
|
%0 = onnx.Constant dense<[[[-4.850000e-01]], [[-4.560000e-01]], [[-4.060000e-01]]]> : tensor<3x1x1xf32> loc( |
|
%1 = onnx.Constant dense<[3, 1]> : tensor<2xi64> loc( |
|
%2 = onnx.Constant dense<16> : tensor<2xi64> loc( |
|
%3 = onnx.Constant dense<20> : tensor<2xi64> loc( |
|
%4 = onnx.Constant dense<40> : tensor<2xi64> loc( |
|
%5 = onnx.Constant dense<64> : tensor<2xi64> loc( |
|
%6 = "onnx.NoValue"() {onnx_node_name = "onnx.NoValue_26", value} : () -> none loc( |
|
%7 = onnx.Constant dense_resource<__elided__> : tensor<112xf32> loc( |
|
%8 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%9 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%10 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc( |
|
%11 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%12 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%13 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%14 = onnx.Constant dense<3> : tensor<1xi64> loc( |
|
%15 = onnx.Constant dense_resource<__elided__> : tensor<128x960x1x1xf32> loc( |
|
%16 = onnx.Constant dense<2.550000e+02> : tensor<f32> loc( |
|
%17 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%18 = onnx.Constant dense<[-0.257117867, -0.332320929, -0.342930794, 0.882337093, -0.811691761, 1.04650748, 1.993430e-01, 0.471133053, 0.0722430944, 0.554342687, 1.3374486, 0.48697716, 1.31853354, 0.714223623, 1.16618729, 0.738572299]> : tensor<16xf32> loc( |
|
%19 = onnx.Constant dense_resource<__elided__> : tensor<16x16x3x3xf32> loc( |
|
%20 = onnx.Constant dense<[0.281471759, -0.0896756947, 0.0517602414, -0.266139954, 0.132527292, 0.684469878, -0.0511226803, 0.859402895, 0.504835129, 0.569725394, 0.217058718, -0.0543790609, -0.30986914, 0.451566547, 0.166573063, 0.415171683]> : tensor<16xf32> loc( |
|
%21 = onnx.Constant dense_resource<__elided__> : tensor<24x64x1x1xf32> loc( |
|
%22 = onnx.Constant dense_resource<__elided__> : tensor<16x35x3x3xf32> loc( |
|
%23 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%24 = onnx.Constant dense_resource<__elided__> : tensor<32x59x3x3xf32> loc( |
|
%25 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%26 = onnx.Constant dense_resource<__elided__> : tensor<128x960x1x1xf32> loc( |
|
%27 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%28 = onnx.Constant dense_resource<__elided__> : tensor<80x171x3x3xf32> loc( |
|
%29 = onnx.Constant dense<[[[2.290000e-01]], [[2.240000e-01]], [[2.250000e-01]]]> : tensor<3x1x1xf32> loc( |
|
%30 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc( |
|
%31 = onnx.Constant dense_resource<__elided__> : tensor<160x960x1x1xf32> loc( |
|
%32 = onnx.Constant dense_resource<__elided__> : tensor<960x1x5x5xf32> loc( |
|
%33 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%34 = onnx.Constant dense_resource<__elided__> : tensor<960x240x1x1xf32> loc( |
|
%35 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc( |
|
%36 = onnx.Constant dense_resource<__elided__> : tensor<960x240x1x1xf32> loc( |
|
%37 = onnx.Constant dense_resource<__elided__> : tensor<960x1x5x5xf32> loc( |
|
%38 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc( |
|
%39 = onnx.Constant dense_resource<__elided__> : tensor<160x672x1x1xf32> loc( |
|
%40 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc( |
|
%41 = onnx.Constant dense_resource<__elided__> : tensor<120x40x1x1xf32> loc( |
|
%42 = onnx.Constant dense_resource<__elided__> : tensor<72x1x5x5xf32> loc( |
|
%43 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%44 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%45 = onnx.Constant dense_resource<__elided__> : tensor<80x200x1x1xf32> loc( |
|
%46 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%47 = onnx.Constant dense_resource<__elided__> : tensor<240x40x1x1xf32> loc( |
|
%48 = onnx.Constant dense_resource<__elided__> : tensor<240x1x3x3xf32> loc( |
|
%49 = onnx.Constant dense_resource<__elided__> : tensor<480x120x1x1xf32> loc( |
|
%50 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%51 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%52 = onnx.Constant dense_resource<__elided__> : tensor<32x32x3x3xf32> loc( |
|
%53 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%54 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%55 = onnx.Constant dense_resource<__elided__> : tensor<200x80x1x1xf32> loc( |
|
%56 = onnx.Constant dense_resource<__elided__> : tensor<184x1x3x3xf32> loc( |
|
%57 = onnx.Constant dense_resource<__elided__> : tensor<200x1x3x3xf32> loc( |
|
%58 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%59 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%60 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc( |
|
%61 = onnx.Constant dense_resource<__elided__> : tensor<16x16x1x1xf32> loc( |
|
%62 = onnx.Constant dense_resource<__elided__> : tensor<64x128x3x3xf32> loc( |
|
%63 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc( |
|
%64 = onnx.Constant dense_resource<__elided__> : tensor<40x120x1x1xf32> loc( |
|
%65 = onnx.Constant dense<[1.000000e+00, 1.000000e+00, 2.000000e+00, 2.000000e+00]> : tensor<4xf32> loc( |
|
%66 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%67 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%68 = onnx.Constant dense_resource<__elided__> : tensor<16x32x3x3xf32> loc( |
|
%69 = onnx.Constant dense<0.000000e+00> : tensor<f32> loc( |
|
%70 = onnx.Constant dense<[0.00409470545, 0.00284675183, 0.00200544903, 0.124928087]> : tensor<4xf32> loc( |
|
%71 = onnx.Constant dense<3.000000e+00> : tensor<f32> loc( |
|
%72 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%73 = onnx.Constant dense_resource<__elided__> : tensor<200xf32> loc( |
|
%74 = onnx.Constant dense_resource<__elided__> : tensor<72x1x3x3xf32> loc( |
|
%75 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%76 = onnx.Constant dense_resource<__elided__> : tensor<120x1x5x5xf32> loc( |
|
%77 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%78 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%79 = onnx.Constant dense_resource<__elided__> : tensor<672x112x1x1xf32> loc( |
|
%80 = onnx.Constant dense_resource<__elided__> : tensor<120x40x1x1xf32> loc( |
|
%81 = onnx.Constant dense<23> : tensor<1xi64> loc( |
|
%82 = onnx.Constant dense_resource<__elided__> : tensor<16x3x3x3xf32> loc( |
|
%83 = onnx.Constant dense_resource<__elided__> : tensor<40x120x1x1xf32> loc( |
|
%84 = onnx.Constant dense<2> : tensor<1xi64> loc( |
|
%85 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%86 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc( |
|
%87 = onnx.Constant dense_resource<__elided__> : tensor<184x1x3x3xf32> loc( |
|
%88 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc( |
|
%89 = onnx.Constant dense<1> : tensor<1xi64> loc( |
|
%90 = onnx.Constant dense_resource<__elided__> : tensor<40x107x3x3xf32> loc( |
|
%91 = onnx.Constant dense_resource<__elided__> : tensor<672x168x1x1xf32> loc( |
|
%92 = onnx.Constant dense<6.000000e+00> : tensor<f32> loc( |
|
%93 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%94 = onnx.Constant dense_resource<__elided__> : tensor<168xf32> loc( |
|
%95 = onnx.Constant dense_resource<__elided__> : tensor<112x672x1x1xf32> loc( |
|
%96 = onnx.Constant dense_resource<__elided__> : tensor<112x480x1x1xf32> loc( |
|
%97 = onnx.Constant dense_resource<__elided__> : tensor<112xf32> loc( |
|
%98 = onnx.Constant dense<1.000000e+00> : tensor<f32> loc( |
|
%99 = onnx.Constant dense_resource<__elided__> : tensor<24x72x1x1xf32> loc( |
|
%100 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%101 = onnx.Constant dense_resource<__elided__> : tensor<120x32x1x1xf32> loc( |
|
%102 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%103 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%104 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%105 = onnx.Constant dense<0> : tensor<1xi64> loc( |
|
%106 = onnx.Constant dense_resource<__elided__> : tensor<120x480x1x1xf32> loc( |
|
%107 = onnx.Constant dense_resource<__elided__> : tensor<672x1x5x5xf32> loc( |
|
%108 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc( |
|
%109 = onnx.Constant dense_resource<__elided__> : tensor<184x80x1x1xf32> loc( |
|
%110 = onnx.Constant dense_resource<__elided__> : tensor<480x80x1x1xf32> loc( |
|
%111 = onnx.Constant dense_resource<__elided__> : tensor<80x184x1x1xf32> loc( |
|
%112 = onnx.Constant dense_resource<__elided__> : tensor<672x168x1x1xf32> loc( |
|
%113 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%114 = onnx.Constant dense_resource<__elided__> : tensor<80x80x3x3xf32> loc( |
|
%115 = onnx.Constant dense_resource<__elided__> : tensor<4x16x1x1xf32> loc( |
|
%116 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc( |
|
%117 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%118 = onnx.Constant dense_resource<__elided__> : tensor<64x1x3x3xf32> loc( |
|
%119 = onnx.Constant dense_resource<__elided__> : tensor<240x960x1x1xf32> loc( |
|
%120 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%121 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc( |
|
%122 = onnx.Constant dense_resource<__elided__> : tensor<80x184x1x1xf32> loc( |
|
%123 = onnx.Constant dense_resource<__elided__> : tensor<480x1x3x3xf32> loc( |
|
%124 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%125 = onnx.Constant dense<[-1.31068802, 0.586562276, 5.67538071, 0.551027656, 2.19523954, 3.83854461, 0.0600251146, -2.18778157, -1.5404067, 2.044780e+00, -4.23846388, 0.703142225, -8.39978456E-5, 3.50620365, -0.531753063, -5.91183185]> : tensor<16xf32> loc( |
|
%126 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%127 = onnx.Constant dense_resource<__elided__> : tensor<128x128x3x3xf32> loc( |
|
%128 = onnx.Constant dense_resource<__elided__> : tensor<672x112x1x1xf32> loc( |
|
%129 = onnx.Constant dense_resource<__elided__> : tensor<32x120x1x1xf32> loc( |
|
%130 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc( |
|
%131 = onnx.Constant dense_resource<__elided__> : tensor<64x16x1x1xf32> loc( |
|
%132 = onnx.Constant dense_resource<__elided__> : tensor<672x1x3x3xf32> loc( |
|
%133 = onnx.Constant dense_resource<__elided__> : tensor<168x672x1x1xf32> loc( |
|
%134 = onnx.Constant dense_resource<__elided__> : tensor<168x672x1x1xf32> loc( |
|
%135 = onnx.Constant dense_resource<__elided__> : tensor<200xf32> loc( |
|
%136 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc( |
|
%137 = onnx.Constant dense_resource<__elided__> : tensor<120x32x1x1xf32> loc( |
|
%138 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc( |
|
%139 = onnx.Constant dense<45> : tensor<1xi64> loc( |
|
%140 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc( |
|
%141 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%142 = onnx.Constant dense_resource<__elided__> : tensor<24x72x1x1xf32> loc( |
|
%143 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc( |
|
%144 = onnx.Constant dense_resource<__elided__> : tensor<40x72x1x1xf32> loc( |
|
%145 = onnx.Constant dense_resource<__elided__> : tensor<168xf32> loc( |
|
%146 = onnx.Constant dense_resource<__elided__> : tensor<32x120x1x1xf32> loc( |
|
%147 = onnx.Constant dense_resource<__elided__> : tensor<128xf32> loc( |
|
%148 = onnx.Constant dense_resource<__elided__> : tensor<128xf32> loc( |
|
%149 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%150 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%151 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%152 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc( |
|
%153 = onnx.Constant dense_resource<__elided__> : tensor<80x240x1x1xf32> loc( |
|
%154 = onnx.Constant dense_resource<__elided__> : tensor<20x40x3x3xf32> loc( |
|
%155 = onnx.Constant dense_resource<__elided__> : tensor<184x80x1x1xf32> loc( |
|
%156 = onnx.Constant dense_resource<__elided__> : tensor<160x960x1x1xf32> loc( |
|
%157 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc( |
|
%158 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc( |
|
%159 = onnx.Constant dense_resource<__elided__> : tensor<40x80x3x3xf32> loc( |
|
%160 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc( |
|
%161 = onnx.Constant dense<[-4.38406658, -1.06764766E-8, -0.704851329, -1.05036237E-8, -4.89120433E-9, 1.53249037, -0.0617836975, 2.16366434, 0.0416259095, -4.12739087E-9, -3.50249429E-9, -7.75795516E-9, -4.04315559E-9, 0.292217016, -0.010752866, 1.63358212]> : tensor<16xf32> loc( |
|
%162 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc( |
|
%163 = onnx.Constant dense_resource<__elided__> : tensor<40x40x3x3xf32> loc( |
|
%164 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc( |
|
%165 = onnx.Constant dense_resource<__elided__> : tensor<16x1x3x3xf32> loc( |
|
%166 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc( |
|
%167 = onnx.Constant dense_resource<__elided__> : tensor<240x960x1x1xf32> loc( |
|
%168 = onnx.Constant dense_resource<__elided__> : tensor<20xf32> loc( |
|
%169 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc( |
|
%170 = onnx.Constant dense<[0.00544366054, 0.154367775, 0.115729354, 0.171141103, -0.168815523, 0.0456937179, 0.188233331, 0.0151384082, 0.242783383, -0.139173314, -0.24988465, -9.479440e-02, -0.055940561, -0.0512795448, -0.0738077834, 0.0476587117]> : tensor<16xf32> loc( |
|
%171 = onnx.Constant dense_resource<__elided__> : tensor<120x1x5x5xf32> loc( |
|
%172 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc( |
|
%173 = onnx.Constant dense<[2.98861408, -1.22985208, 2.43826318, -3.98499513, 4.62797928, 2.54142761, 2.45345306, 2.64061832, 2.13576674, 2.30800247, -0.198341176, -0.427822977, -1.09159482, 4.85548782, 2.70597649, 2.6902504]> : tensor<16xf32> loc( |
|
%174 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc( |
|
%175 = "onnx.Transpose"(%arg1) {onnx_node_name = "Transpose_9", perm = [0, 3, 1, 2]} : (tensor<1x90x160x16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%176 = "onnx.Transpose"(%arg2) {onnx_node_name = "Transpose_10", perm = [0, 3, 1, 2]} : (tensor<1x45x80x20xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%177 = "onnx.Transpose"(%arg3) {onnx_node_name = "Transpose_11", perm = [0, 3, 1, 2]} : (tensor<1x23x40x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%178 = "onnx.Cast"(%arg0) { |
|
onnx_node_name = "Cast_0", |
|
saturate = 1 : si64, |
|
to = f32} : (tensor<1x180x320x4xui8>) -> tensor<1x180x320x4xf32> loc( |
|
%179 = "onnx.Div"(%178, %16) {onnx_node_name = "Div_2"} : (tensor<1x180x320x4xf32>, tensor<f32>) -> tensor<1x180x320x4xf32> loc( |
|
%180 = "onnx.Slice"(%179, %105, %14, %14, %89) {onnx_node_name = "Slice_7"} : (tensor<1x180x320x4xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x180x320x3xf32> loc( |
|
%181 = "onnx.Transpose"(%180) {onnx_node_name = "Transpose_8", perm = [0, 3, 1, 2]} : (tensor<1x180x320x3xf32>) -> tensor<1x3x180x320xf32> loc( |
|
%182 = "onnx.AveragePool"(%181) { |
|
auto_pad = "NOTSET", |
|
ceil_mode = 1 : si64, |
|
count_include_pad = 0 : si64, |
|
kernel_shape = [2, 2], |
|
onnx_node_name = "AveragePool_346", |
|
pads = [0, 0, 0, 0], |
|
strides = [2, 2]} : (tensor<1x3x180x320xf32>) -> tensor<1x3x90x160xf32> loc( |
|
%183 = "onnx.AveragePool"(%182) { |
|
auto_pad = "NOTSET", |
|
ceil_mode = 1 : si64, |
|
count_include_pad = 0 : si64, |
|
kernel_shape = [2, 2], |
|
onnx_node_name = "AveragePool_347", |
|
pads = [0, 0, 0, 0], |
|
strides = [2, 2]} : (tensor<1x3x90x160xf32>) -> tensor<1x3x45x80xf32> loc( |
|
%184 = "onnx.AveragePool"(%183) { |
|
auto_pad = "NOTSET", |
|
ceil_mode = 1 : si64, |
|
count_include_pad = 0 : si64, |
|
kernel_shape = [2, 2], |
|
onnx_node_name = "AveragePool_348", |
|
pads = [0, 0, 0, 0], |
|
strides = [2, 2]} : (tensor<1x3x45x80xf32>) -> tensor<1x3x23x40xf32> loc( |
|
%185 = "onnx.Transpose"(%arg4) {onnx_node_name = "Transpose_12", perm = [0, 3, 1, 2]} : (tensor<1x12x20x64xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%186 = "onnx.Add"(%181, %0) {onnx_node_name = "Sub_14-Initializer_398_48"} : (tensor<1x3x180x320xf32>, tensor<3x1x1xf32>) -> tensor<1x3x180x320xf32> loc( |
|
%187 = "onnx.Div"(%186, %29) {onnx_node_name = "Div_16"} : (tensor<1x3x180x320xf32>, tensor<3x1x1xf32>) -> tensor<1x3x180x320xf32> loc( |
|
%188 = "onnx.Conv"(%187, %82, %173) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_17", |
|
pads = [1, 1, 1, 1], |
|
strides = [2, 2]} : (tensor<1x3x180x320xf32>, tensor<16x3x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%189 = "onnx.Add"(%188, %71) {onnx_node_name = "Add_19"} : (tensor<1x16x90x160xf32>, tensor<f32>) -> tensor<1x16x90x160xf32> loc( |
|
%190 = "onnx.Clip"(%189, %69, %92) {onnx_node_name = "Clip_22_50"} : (tensor<1x16x90x160xf32>, tensor<f32>, tensor<f32>) -> tensor<1x16x90x160xf32> loc( |
|
%191 = "onnx.Div"(%190, %92) {onnx_node_name = "Div_24"} : (tensor<1x16x90x160xf32>, tensor<f32>) -> tensor<1x16x90x160xf32> loc( |
|
%192 = "onnx.Mul"(%188, %191) {onnx_node_name = "Mul_25"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%193 = "onnx.Conv"(%192, %165, %161) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 16 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_26", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<16x1x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%194 = "onnx.Relu"(%193) {onnx_node_name = "Relu_27"} : (tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%195 = "onnx.Conv"(%194, %61, %125) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_28", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<16x16x1x1xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%196 = "onnx.Add"(%195, %192) {onnx_node_name = "Add_29"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%197 = "onnx.Conv"(%196, %131, %174) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_30", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<64x16x1x1xf32>, tensor<64xf32>) -> tensor<1x64x90x160xf32> loc( |
|
%198 = "onnx.Relu"(%197) {onnx_node_name = "Relu_31"} : (tensor<1x64x90x160xf32>) -> tensor<1x64x90x160xf32> loc( |
|
%199 = "onnx.Conv"(%198, %118, %86) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 64 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_32", |
|
pads = [1, 1, 1, 1], |
|
strides = [2, 2]} : (tensor<1x64x90x160xf32>, tensor<64x1x3x3xf32>, tensor<64xf32>) -> tensor<1x64x45x80xf32> loc( |
|
%200 = "onnx.Relu"(%199) {onnx_node_name = "Relu_33"} : (tensor<1x64x45x80xf32>) -> tensor<1x64x45x80xf32> loc( |
|
%201 = "onnx.Conv"(%200, %21, %10) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_34", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x64x45x80xf32>, tensor<24x64x1x1xf32>, tensor<24xf32>) -> tensor<1x24x45x80xf32> loc( |
|
%202 = "onnx.Conv"(%201, %116, %72) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_35", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x24x45x80xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%203 = "onnx.Relu"(%202) {onnx_node_name = "Relu_36"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%204 = "onnx.Conv"(%203, %74, %58) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 72 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_37", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x72x45x80xf32>, tensor<72x1x3x3xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%205 = "onnx.Relu"(%204) {onnx_node_name = "Relu_38"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%206 = "onnx.Conv"(%205, %99, %40) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_39", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x72x45x80xf32>, tensor<24x72x1x1xf32>, tensor<24xf32>) -> tensor<1x24x45x80xf32> loc( |
|
%207 = "onnx.Add"(%206, %201) {onnx_node_name = "Add_40"} : (tensor<1x24x45x80xf32>, tensor<1x24x45x80xf32>) -> tensor<1x24x45x80xf32> loc( |
|
%208 = "onnx.Conv"(%207, %166, %169) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_41", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x24x45x80xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%209 = "onnx.Relu"(%208) {onnx_node_name = "Relu_42"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc( |
|
%210 = "onnx.Conv"(%209, %42, %149) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 72 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_43", |
|
pads = [2, 2, 2, 2], |
|
strides = [2, 2]} : (tensor<1x72x45x80xf32>, tensor<72x1x5x5xf32>, tensor<72xf32>) -> tensor<1x72x23x40xf32> loc( |
|
%211 = "onnx.Relu"(%210) {onnx_node_name = "Relu_44"} : (tensor<1x72x23x40xf32>) -> tensor<1x72x23x40xf32> loc( |
|
%212 = "onnx.ReduceMeanV13"(%211) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_45_12"} : (tensor<1x72x23x40xf32>) -> tensor<1x72x1x1xf32> loc( |
|
%213 = "onnx.Conv"(%212, %142, %157) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_46", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x72x1x1xf32>, tensor<24x72x1x1xf32>, tensor<24xf32>) -> tensor<1x24x1x1xf32> loc( |
|
%214 = "onnx.Relu"(%213) {onnx_node_name = "Relu_47"} : (tensor<1x24x1x1xf32>) -> tensor<1x24x1x1xf32> loc( |
|
%215 = "onnx.Conv"(%214, %160, %150) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_48", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x24x1x1xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x1x1xf32> loc( |
|
%216 = "onnx.Add"(%215, %71) {onnx_node_name = "Add_50"} : (tensor<1x72x1x1xf32>, tensor<f32>) -> tensor<1x72x1x1xf32> loc( |
|
%217 = "onnx.Clip"(%216, %69, %92) {onnx_node_name = "Clip_53_39"} : (tensor<1x72x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x72x1x1xf32> loc( |
|
%218 = "onnx.Div"(%217, %92) {onnx_node_name = "Div_55"} : (tensor<1x72x1x1xf32>, tensor<f32>) -> tensor<1x72x1x1xf32> loc( |
|
%219 = "onnx.Mul"(%218, %211) {onnx_node_name = "Mul_56"} : (tensor<1x72x1x1xf32>, tensor<1x72x23x40xf32>) -> tensor<1x72x23x40xf32> loc( |
|
%220 = "onnx.Conv"(%219, %144, %9) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_57", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x72x23x40xf32>, tensor<40x72x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%221 = "onnx.Conv"(%220, %80, %11) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_58", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<120x40x1x1xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%222 = "onnx.Relu"(%221) {onnx_node_name = "Relu_59"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%223 = "onnx.Conv"(%222, %171, %75) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 120 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_60", |
|
pads = [2, 2, 2, 2], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<120x1x5x5xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%224 = "onnx.Relu"(%223) {onnx_node_name = "Relu_61"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%225 = "onnx.ReduceMeanV13"(%224) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_62_5"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%226 = "onnx.Conv"(%225, %129, %17) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_63", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<32x120x1x1xf32>, tensor<32xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%227 = "onnx.Relu"(%226) {onnx_node_name = "Relu_64"} : (tensor<1x32x1x1xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%228 = "onnx.Conv"(%227, %137, %44) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_65", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x32x1x1xf32>, tensor<120x32x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%229 = "onnx.Add"(%228, %71) {onnx_node_name = "Add_67"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%230 = "onnx.Clip"(%229, %69, %92) {onnx_node_name = "Clip_70_45"} : (tensor<1x120x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%231 = "onnx.Div"(%230, %92) {onnx_node_name = "Div_72"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%232 = "onnx.Mul"(%231, %224) {onnx_node_name = "Mul_73"} : (tensor<1x120x1x1xf32>, tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%233 = "onnx.Conv"(%232, %64, %43) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_74", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<40x120x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%234 = "onnx.Add"(%233, %220) {onnx_node_name = "Add_75"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%235 = "onnx.Conv"(%234, %41, %88) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_76", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<120x40x1x1xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%236 = "onnx.Relu"(%235) {onnx_node_name = "Relu_77"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%237 = "onnx.Conv"(%236, %76, %53) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 120 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_78", |
|
pads = [2, 2, 2, 2], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<120x1x5x5xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%238 = "onnx.Relu"(%237) {onnx_node_name = "Relu_79"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%239 = "onnx.ReduceMeanV13"(%238) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_80_6"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%240 = "onnx.Conv"(%239, %146, %130) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_81", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<32x120x1x1xf32>, tensor<32xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%241 = "onnx.Relu"(%240) {onnx_node_name = "Relu_82"} : (tensor<1x32x1x1xf32>) -> tensor<1x32x1x1xf32> loc( |
|
%242 = "onnx.Conv"(%241, %101, %8) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_83", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x32x1x1xf32>, tensor<120x32x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%243 = "onnx.Add"(%242, %71) {onnx_node_name = "Add_85"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%244 = "onnx.Clip"(%243, %69, %92) {onnx_node_name = "Clip_88_52"} : (tensor<1x120x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%245 = "onnx.Div"(%244, %92) {onnx_node_name = "Div_90"} : (tensor<1x120x1x1xf32>, tensor<f32>) -> tensor<1x120x1x1xf32> loc( |
|
%246 = "onnx.Mul"(%245, %238) {onnx_node_name = "Mul_91"} : (tensor<1x120x1x1xf32>, tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc( |
|
%247 = "onnx.Conv"(%246, %83, %104) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_92", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<40x120x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%248 = "onnx.Add"(%247, %234) {onnx_node_name = "Add_93"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%249 = "onnx.Conv"(%248, %47, %113) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_94", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<240x40x1x1xf32>, tensor<240xf32>) -> tensor<1x240x23x40xf32> loc( |
|
%250 = "onnx.Add"(%249, %71) {onnx_node_name = "Add_96"} : (tensor<1x240x23x40xf32>, tensor<f32>) -> tensor<1x240x23x40xf32> loc( |
|
%251 = "onnx.Clip"(%250, %69, %92) {onnx_node_name = "Clip_99_43"} : (tensor<1x240x23x40xf32>, tensor<f32>, tensor<f32>) -> tensor<1x240x23x40xf32> loc( |
|
%252 = "onnx.Div"(%251, %92) {onnx_node_name = "Div_101"} : (tensor<1x240x23x40xf32>, tensor<f32>) -> tensor<1x240x23x40xf32> loc( |
|
%253 = "onnx.Mul"(%249, %252) {onnx_node_name = "Mul_102"} : (tensor<1x240x23x40xf32>, tensor<1x240x23x40xf32>) -> tensor<1x240x23x40xf32> loc( |
|
%254 = "onnx.Conv"(%253, %48, %77) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 240 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_103", |
|
pads = [1, 1, 1, 1], |
|
strides = [2, 2]} : (tensor<1x240x23x40xf32>, tensor<240x1x3x3xf32>, tensor<240xf32>) -> tensor<1x240x12x20xf32> loc( |
|
%255 = "onnx.Add"(%254, %71) {onnx_node_name = "Add_105"} : (tensor<1x240x12x20xf32>, tensor<f32>) -> tensor<1x240x12x20xf32> loc( |
|
%256 = "onnx.Clip"(%255, %69, %92) {onnx_node_name = "Clip_108_25"} : (tensor<1x240x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x240x12x20xf32> loc( |
|
%257 = "onnx.Div"(%256, %92) {onnx_node_name = "Div_110"} : (tensor<1x240x12x20xf32>, tensor<f32>) -> tensor<1x240x12x20xf32> loc( |
|
%258 = "onnx.Mul"(%254, %257) {onnx_node_name = "Mul_111"} : (tensor<1x240x12x20xf32>, tensor<1x240x12x20xf32>) -> tensor<1x240x12x20xf32> loc( |
|
%259 = "onnx.Conv"(%258, %153, %67) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_112", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x240x12x20xf32>, tensor<80x240x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%260 = "onnx.Conv"(%259, %55, %135) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_113", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<200x80x1x1xf32>, tensor<200xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%261 = "onnx.Add"(%260, %71) {onnx_node_name = "Add_115"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%262 = "onnx.Clip"(%261, %69, %92) {onnx_node_name = "Clip_118_44"} : (tensor<1x200x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%263 = "onnx.Div"(%262, %92) {onnx_node_name = "Div_120"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%264 = "onnx.Mul"(%260, %263) {onnx_node_name = "Mul_121"} : (tensor<1x200x12x20xf32>, tensor<1x200x12x20xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%265 = "onnx.Conv"(%264, %57, %73) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 200 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_122", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x200x12x20xf32>, tensor<200x1x3x3xf32>, tensor<200xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%266 = "onnx.Add"(%265, %71) {onnx_node_name = "Add_124"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%267 = "onnx.Clip"(%266, %69, %92) {onnx_node_name = "Clip_127_32"} : (tensor<1x200x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%268 = "onnx.Div"(%267, %92) {onnx_node_name = "Div_129"} : (tensor<1x200x12x20xf32>, tensor<f32>) -> tensor<1x200x12x20xf32> loc( |
|
%269 = "onnx.Mul"(%265, %268) {onnx_node_name = "Mul_130"} : (tensor<1x200x12x20xf32>, tensor<1x200x12x20xf32>) -> tensor<1x200x12x20xf32> loc( |
|
%270 = "onnx.Conv"(%269, %45, %59) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_131", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x200x12x20xf32>, tensor<80x200x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%271 = "onnx.Add"(%270, %259) {onnx_node_name = "Add_132"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%272 = "onnx.Conv"(%271, %109, %103) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_133", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<184x80x1x1xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%273 = "onnx.Add"(%272, %71) {onnx_node_name = "Add_135"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%274 = "onnx.Clip"(%273, %69, %92) {onnx_node_name = "Clip_138_1"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%275 = "onnx.Div"(%274, %92) {onnx_node_name = "Div_140"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%276 = "onnx.Mul"(%272, %275) {onnx_node_name = "Mul_141"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%277 = "onnx.Conv"(%276, %87, %108) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 184 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_142", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<184x1x3x3xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%278 = "onnx.Add"(%277, %71) {onnx_node_name = "Add_144"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%279 = "onnx.Clip"(%278, %69, %92) {onnx_node_name = "Clip_147_11"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%280 = "onnx.Div"(%279, %92) {onnx_node_name = "Div_149"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%281 = "onnx.Mul"(%277, %280) {onnx_node_name = "Mul_150"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%282 = "onnx.Conv"(%281, %111, %93) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_151", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<80x184x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%283 = "onnx.Add"(%282, %271) {onnx_node_name = "Add_152"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%284 = "onnx.Conv"(%283, %155, %12) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_153", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<184x80x1x1xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%285 = "onnx.Add"(%284, %71) {onnx_node_name = "Add_155"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%286 = "onnx.Clip"(%285, %69, %92) {onnx_node_name = "Clip_158_33"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%287 = "onnx.Div"(%286, %92) {onnx_node_name = "Div_160"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%288 = "onnx.Mul"(%284, %287) {onnx_node_name = "Mul_161"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%289 = "onnx.Conv"(%288, %56, %51) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 184 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_162", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<184x1x3x3xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%290 = "onnx.Add"(%289, %71) {onnx_node_name = "Add_164"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%291 = "onnx.Clip"(%290, %69, %92) {onnx_node_name = "Clip_167_46"} : (tensor<1x184x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%292 = "onnx.Div"(%291, %92) {onnx_node_name = "Div_169"} : (tensor<1x184x12x20xf32>, tensor<f32>) -> tensor<1x184x12x20xf32> loc( |
|
%293 = "onnx.Mul"(%289, %292) {onnx_node_name = "Mul_170"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc( |
|
%294 = "onnx.Conv"(%293, %122, %13) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_171", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<80x184x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%295 = "onnx.Add"(%294, %283) {onnx_node_name = "Add_172"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc( |
|
%296 = "onnx.Conv"(%295, %110, %136) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_173", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<480x80x1x1xf32>, tensor<480xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%297 = "onnx.Add"(%296, %71) {onnx_node_name = "Add_175"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%298 = "onnx.Clip"(%297, %69, %92) {onnx_node_name = "Clip_178_24"} : (tensor<1x480x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%299 = "onnx.Div"(%298, %92) {onnx_node_name = "Div_180"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%300 = "onnx.Mul"(%296, %299) {onnx_node_name = "Mul_181"} : (tensor<1x480x12x20xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%301 = "onnx.Conv"(%300, %123, %60) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 480 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_182", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x480x12x20xf32>, tensor<480x1x3x3xf32>, tensor<480xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%302 = "onnx.Add"(%301, %71) {onnx_node_name = "Add_184"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%303 = "onnx.Clip"(%302, %69, %92) {onnx_node_name = "Clip_187_23"} : (tensor<1x480x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%304 = "onnx.Div"(%303, %92) {onnx_node_name = "Div_189"} : (tensor<1x480x12x20xf32>, tensor<f32>) -> tensor<1x480x12x20xf32> loc( |
|
%305 = "onnx.Mul"(%301, %304) {onnx_node_name = "Mul_190"} : (tensor<1x480x12x20xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%306 = "onnx.ReduceMeanV13"(%305) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_191_37"} : (tensor<1x480x12x20xf32>) -> tensor<1x480x1x1xf32> loc( |
|
%307 = "onnx.Conv"(%306, %106, %50) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_192", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x480x1x1xf32>, tensor<120x480x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%308 = "onnx.Relu"(%307) {onnx_node_name = "Relu_193"} : (tensor<1x120x1x1xf32>) -> tensor<1x120x1x1xf32> loc( |
|
%309 = "onnx.Conv"(%308, %49, %63) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_194", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<480x120x1x1xf32>, tensor<480xf32>) -> tensor<1x480x1x1xf32> loc( |
|
%310 = "onnx.Add"(%309, %71) {onnx_node_name = "Add_196"} : (tensor<1x480x1x1xf32>, tensor<f32>) -> tensor<1x480x1x1xf32> loc( |
|
%311 = "onnx.Clip"(%310, %69, %92) {onnx_node_name = "Clip_199_41"} : (tensor<1x480x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x480x1x1xf32> loc( |
|
%312 = "onnx.Div"(%311, %92) {onnx_node_name = "Div_201"} : (tensor<1x480x1x1xf32>, tensor<f32>) -> tensor<1x480x1x1xf32> loc( |
|
%313 = "onnx.Mul"(%312, %305) {onnx_node_name = "Mul_202"} : (tensor<1x480x1x1xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc( |
|
%314 = "onnx.Conv"(%313, %96, %7) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_203", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x480x12x20xf32>, tensor<112x480x1x1xf32>, tensor<112xf32>) -> tensor<1x112x12x20xf32> loc( |
|
%315 = "onnx.Conv"(%314, %79, %138) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_204", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x112x12x20xf32>, tensor<672x112x1x1xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%316 = "onnx.Add"(%315, %71) {onnx_node_name = "Add_206"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%317 = "onnx.Clip"(%316, %69, %92) {onnx_node_name = "Clip_209_0"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%318 = "onnx.Div"(%317, %92) {onnx_node_name = "Div_211"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%319 = "onnx.Mul"(%315, %318) {onnx_node_name = "Mul_212"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%320 = "onnx.Conv"(%319, %132, %100) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 672 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_213", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<672x1x3x3xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%321 = "onnx.Add"(%320, %71) {onnx_node_name = "Add_215"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%322 = "onnx.Clip"(%321, %69, %92) {onnx_node_name = "Clip_218_51"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%323 = "onnx.Div"(%322, %92) {onnx_node_name = "Div_220"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%324 = "onnx.Mul"(%320, %323) {onnx_node_name = "Mul_221"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%325 = "onnx.ReduceMeanV13"(%324) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_222_2"} : (tensor<1x672x12x20xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%326 = "onnx.Conv"(%325, %133, %145) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_223", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x1x1xf32>, tensor<168x672x1x1xf32>, tensor<168xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%327 = "onnx.Relu"(%326) {onnx_node_name = "Relu_224"} : (tensor<1x168x1x1xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%328 = "onnx.Conv"(%327, %91, %124) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_225", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x168x1x1xf32>, tensor<672x168x1x1xf32>, tensor<672xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%329 = "onnx.Add"(%328, %71) {onnx_node_name = "Add_227"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%330 = "onnx.Clip"(%329, %69, %92) {onnx_node_name = "Clip_230_53"} : (tensor<1x672x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%331 = "onnx.Div"(%330, %92) {onnx_node_name = "Div_232"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%332 = "onnx.Mul"(%331, %324) {onnx_node_name = "Mul_233"} : (tensor<1x672x1x1xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%333 = "onnx.Conv"(%332, %95, %97) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_234", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<112x672x1x1xf32>, tensor<112xf32>) -> tensor<1x112x12x20xf32> loc( |
|
%334 = "onnx.Add"(%333, %314) {onnx_node_name = "Add_235"} : (tensor<1x112x12x20xf32>, tensor<1x112x12x20xf32>) -> tensor<1x112x12x20xf32> loc( |
|
%335 = "onnx.Conv"(%334, %128, %120) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_236", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x112x12x20xf32>, tensor<672x112x1x1xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%336 = "onnx.Add"(%335, %71) {onnx_node_name = "Add_238"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%337 = "onnx.Clip"(%336, %69, %92) {onnx_node_name = "Clip_241_17"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%338 = "onnx.Div"(%337, %92) {onnx_node_name = "Div_243"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%339 = "onnx.Mul"(%335, %338) {onnx_node_name = "Mul_244"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%340 = "onnx.Conv"(%339, %107, %46) { |
|
auto_pad = "NOTSET", |
|
dilations = [2, 2], |
|
group = 672 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_245", |
|
pads = [4, 4, 4, 4], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<672x1x5x5xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%341 = "onnx.Add"(%340, %71) {onnx_node_name = "Add_247"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%342 = "onnx.Clip"(%341, %69, %92) {onnx_node_name = "Clip_250_15"} : (tensor<1x672x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%343 = "onnx.Div"(%342, %92) {onnx_node_name = "Div_252"} : (tensor<1x672x12x20xf32>, tensor<f32>) -> tensor<1x672x12x20xf32> loc( |
|
%344 = "onnx.Mul"(%340, %343) {onnx_node_name = "Mul_253"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%345 = "onnx.ReduceMeanV13"(%344) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_254_36"} : (tensor<1x672x12x20xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%346 = "onnx.Conv"(%345, %134, %94) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_255", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x1x1xf32>, tensor<168x672x1x1xf32>, tensor<168xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%347 = "onnx.Relu"(%346) {onnx_node_name = "Relu_256"} : (tensor<1x168x1x1xf32>) -> tensor<1x168x1x1xf32> loc( |
|
%348 = "onnx.Conv"(%347, %112, %54) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_257", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x168x1x1xf32>, tensor<672x168x1x1xf32>, tensor<672xf32>) -> tensor<1x672x1x1xf32> loc( |
|
%349 = "onnx.Add"(%348, %71) {onnx_node_name = "Add_259"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%350 = "onnx.Clip"(%349, %69, %92) {onnx_node_name = "Clip_262_20"} : (tensor<1x672x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%351 = "onnx.Div"(%350, %92) {onnx_node_name = "Div_264"} : (tensor<1x672x1x1xf32>, tensor<f32>) -> tensor<1x672x1x1xf32> loc( |
|
%352 = "onnx.Mul"(%351, %344) {onnx_node_name = "Mul_265"} : (tensor<1x672x1x1xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc( |
|
%353 = "onnx.Conv"(%352, %39, %38) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_266", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<160x672x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%354 = "onnx.Conv"(%353, %164, %141) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_267", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%355 = "onnx.Add"(%354, %71) {onnx_node_name = "Add_269"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%356 = "onnx.Clip"(%355, %69, %92) {onnx_node_name = "Clip_272_34"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%357 = "onnx.Div"(%356, %92) {onnx_node_name = "Div_274"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%358 = "onnx.Mul"(%354, %357) {onnx_node_name = "Mul_275"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%359 = "onnx.Conv"(%358, %37, %85) { |
|
auto_pad = "NOTSET", |
|
dilations = [2, 2], |
|
group = 960 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_276", |
|
pads = [4, 4, 4, 4], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<960x1x5x5xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%360 = "onnx.Add"(%359, %71) {onnx_node_name = "Add_278"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%361 = "onnx.Clip"(%360, %69, %92) {onnx_node_name = "Clip_281_18"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%362 = "onnx.Div"(%361, %92) {onnx_node_name = "Div_283"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%363 = "onnx.Mul"(%359, %362) {onnx_node_name = "Mul_284"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%364 = "onnx.ReduceMeanV13"(%363) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_285_38"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%365 = "onnx.Conv"(%364, %167, %78) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_286", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<240x960x1x1xf32>, tensor<240xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%366 = "onnx.Relu"(%365) {onnx_node_name = "Relu_287"} : (tensor<1x240x1x1xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%367 = "onnx.Conv"(%366, %36, %66) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_288", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x240x1x1xf32>, tensor<960x240x1x1xf32>, tensor<960xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%368 = "onnx.Add"(%367, %71) {onnx_node_name = "Add_290"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%369 = "onnx.Clip"(%368, %69, %92) {onnx_node_name = "Clip_293_3"} : (tensor<1x960x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%370 = "onnx.Div"(%369, %92) {onnx_node_name = "Div_295"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%371 = "onnx.Mul"(%370, %363) {onnx_node_name = "Mul_296"} : (tensor<1x960x1x1xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%372 = "onnx.Conv"(%371, %156, %35) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_297", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<160x960x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%373 = "onnx.Add"(%372, %353) {onnx_node_name = "Add_298"} : (tensor<1x160x12x20xf32>, tensor<1x160x12x20xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%374 = "onnx.Conv"(%373, %172, %33) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_299", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%375 = "onnx.Add"(%374, %71) {onnx_node_name = "Add_301"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%376 = "onnx.Clip"(%375, %69, %92) {onnx_node_name = "Clip_304_8"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%377 = "onnx.Div"(%376, %92) {onnx_node_name = "Div_306"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%378 = "onnx.Mul"(%374, %377) {onnx_node_name = "Mul_307"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%379 = "onnx.Conv"(%378, %32, %117) { |
|
auto_pad = "NOTSET", |
|
dilations = [2, 2], |
|
group = 960 : si64, |
|
kernel_shape = [5, 5], |
|
onnx_node_name = "Conv_308", |
|
pads = [4, 4, 4, 4], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<960x1x5x5xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%380 = "onnx.Add"(%379, %71) {onnx_node_name = "Add_310"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%381 = "onnx.Clip"(%380, %69, %92) {onnx_node_name = "Clip_313_40"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%382 = "onnx.Div"(%381, %92) {onnx_node_name = "Div_315"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%383 = "onnx.Mul"(%379, %382) {onnx_node_name = "Mul_316"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%384 = "onnx.ReduceMeanV13"(%383) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_317_7"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%385 = "onnx.Conv"(%384, %119, %143) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_318", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<240x960x1x1xf32>, tensor<240xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%386 = "onnx.Relu"(%385) {onnx_node_name = "Relu_319"} : (tensor<1x240x1x1xf32>) -> tensor<1x240x1x1xf32> loc( |
|
%387 = "onnx.Conv"(%386, %34, %151) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_320", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x240x1x1xf32>, tensor<960x240x1x1xf32>, tensor<960xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%388 = "onnx.Add"(%387, %71) {onnx_node_name = "Add_322"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%389 = "onnx.Clip"(%388, %69, %92) {onnx_node_name = "Clip_325_10"} : (tensor<1x960x1x1xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%390 = "onnx.Div"(%389, %92) {onnx_node_name = "Div_327"} : (tensor<1x960x1x1xf32>, tensor<f32>) -> tensor<1x960x1x1xf32> loc( |
|
%391 = "onnx.Mul"(%390, %383) {onnx_node_name = "Mul_328"} : (tensor<1x960x1x1xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%392 = "onnx.Conv"(%391, %31, %152) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_329", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<160x960x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%393 = "onnx.Add"(%392, %373) {onnx_node_name = "Add_330"} : (tensor<1x160x12x20xf32>, tensor<1x160x12x20xf32>) -> tensor<1x160x12x20xf32> loc( |
|
%394 = "onnx.Conv"(%393, %30, %158) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_331", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%395 = "onnx.Add"(%394, %71) {onnx_node_name = "Add_333"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%396 = "onnx.Clip"(%395, %69, %92) {onnx_node_name = "Clip_336_42"} : (tensor<1x960x12x20xf32>, tensor<f32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%397 = "onnx.Div"(%396, %92) {onnx_node_name = "Div_338"} : (tensor<1x960x12x20xf32>, tensor<f32>) -> tensor<1x960x12x20xf32> loc( |
|
%398 = "onnx.Mul"(%394, %397) {onnx_node_name = "Mul_339"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc( |
|
%399 = "onnx.Conv"(%398, %26, %148) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_340", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<128x960x1x1xf32>, tensor<128xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%400 = "onnx.Relu"(%399) {onnx_node_name = "Relu_341"} : (tensor<1x128x12x20xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%401 = "onnx.ReduceMeanV13"(%398) { |
|
axes = [2, 3], |
|
keepdims = 1 : si64, |
|
onnx_node_name = "GlobalAveragePool_342_49"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc( |
|
%402 = "onnx.Conv"(%401, %15, %6) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_343", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<128x960x1x1xf32>, none) -> tensor<1x128x1x1xf32> loc( |
|
%403 = "onnx.Sigmoid"(%402) {onnx_node_name = "Sigmoid_344"} : (tensor<1x128x1x1xf32>) -> tensor<1x128x1x1xf32> loc( |
|
%404 = "onnx.Mul"(%400, %403) {onnx_node_name = "Mul_345"} : (tensor<1x128x12x20xf32>, tensor<1x128x1x1xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%405:2 = "onnx.Split"(%404, %5) {axis = 1 : si64, onnx_node_name = "Split_349_29"} : (tensor<1x128x12x20xf32>, tensor<2xi64>) -> (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) loc( |
|
%406 = "onnx.Concat"(%405 |
|
%407 = "onnx.Conv"(%406, %127, %147) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_351", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x128x12x20xf32>, tensor<128x128x3x3xf32>, tensor<128xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%408 = "onnx.Sigmoid"(%407) {onnx_node_name = "Sigmoid_352"} : (tensor<1x128x12x20xf32>) -> tensor<1x128x12x20xf32> loc( |
|
%409:2 = "onnx.Split"(%408, %5) {axis = 1 : si64, onnx_node_name = "Split_353_13"} : (tensor<1x128x12x20xf32>, tensor<2xi64>) -> (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) loc( |
|
%410 = "onnx.Sub"(%98, %409 |
|
%411 = "onnx.Mul"(%410, %185) {onnx_node_name = "Mul_360"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%412 = "onnx.Mul"(%409 |
|
%413 = "onnx.Concat"(%405 |
|
%414 = "onnx.Conv"(%413, %62, %121) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_356", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x128x12x20xf32>, tensor<64x128x3x3xf32>, tensor<64xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%415 = "onnx.Tanh"(%414) {onnx_node_name = "Tanh_357"} : (tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%416 = "onnx.Mul"(%409 |
|
%417 = "onnx.Add"(%411, %416) {onnx_node_name = "Add_362"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc( |
|
%418 = "onnx.Concat"(%405 |
|
%419 = "onnx.Resize"(%418, %6, %65, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_365_21"} : (tensor<1x128x12x20xf32>, none, tensor<4xf32>, none) -> tensor<1x128x24x40xf32> loc( |
|
%420 = "onnx.Slice"(%419, %105, %81, %84, %89) {onnx_node_name = "Slice_371"} : (tensor<1x128x24x40xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x128x23x40xf32> loc( |
|
%421 = "onnx.Concat"(%420, %248, %184) {axis = 1 : si64, onnx_node_name = "Concat_372"} : (tensor<1x128x23x40xf32>, tensor<1x40x23x40xf32>, tensor<1x3x23x40xf32>) -> tensor<1x171x23x40xf32> loc( |
|
%422 = "onnx.Conv"(%421, %28, %27) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_373", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x171x23x40xf32>, tensor<80x171x3x3xf32>, tensor<80xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%423 = "onnx.Relu"(%422) {onnx_node_name = "Relu_374"} : (tensor<1x80x23x40xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%424:2 = "onnx.Split"(%423, %4) {axis = 1 : si64, onnx_node_name = "Split_375_19"} : (tensor<1x80x23x40xf32>, tensor<2xi64>) -> (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) loc( |
|
%425 = "onnx.Concat"(%424 |
|
%426 = "onnx.Conv"(%425, %114, %140) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_377", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x80x23x40xf32>, tensor<80x80x3x3xf32>, tensor<80xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%427 = "onnx.Sigmoid"(%426) {onnx_node_name = "Sigmoid_378"} : (tensor<1x80x23x40xf32>) -> tensor<1x80x23x40xf32> loc( |
|
%428:2 = "onnx.Split"(%427, %4) {axis = 1 : si64, onnx_node_name = "Split_379_35"} : (tensor<1x80x23x40xf32>, tensor<2xi64>) -> (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) loc( |
|
%429 = "onnx.Sub"(%98, %428 |
|
%430 = "onnx.Mul"(%429, %177) {onnx_node_name = "Mul_386"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%431 = "onnx.Mul"(%428 |
|
%432 = "onnx.Concat"(%424 |
|
%433 = "onnx.Conv"(%432, %159, %162) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_382", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x80x23x40xf32>, tensor<40x80x3x3xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%434 = "onnx.Tanh"(%433) {onnx_node_name = "Tanh_383"} : (tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%435 = "onnx.Mul"(%428 |
|
%436 = "onnx.Add"(%430, %435) {onnx_node_name = "Add_388"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc( |
|
%437 = "onnx.Concat"(%424 |
|
%438 = "onnx.Resize"(%437, %6, %65, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_391_4"} : (tensor<1x80x23x40xf32>, none, tensor<4xf32>, none) -> tensor<1x80x46x80xf32> loc( |
|
%439 = "onnx.Slice"(%438, %105, %139, %84, %89) {onnx_node_name = "Slice_397"} : (tensor<1x80x46x80xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x80x45x80xf32> loc( |
|
%440 = "onnx.Concat"(%439, %207, %183) {axis = 1 : si64, onnx_node_name = "Concat_398"} : (tensor<1x80x45x80xf32>, tensor<1x24x45x80xf32>, tensor<1x3x45x80xf32>) -> tensor<1x107x45x80xf32> loc( |
|
%441 = "onnx.Conv"(%440, %90, %25) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_399", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x107x45x80xf32>, tensor<40x107x3x3xf32>, tensor<40xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%442 = "onnx.Relu"(%441) {onnx_node_name = "Relu_400"} : (tensor<1x40x45x80xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%443:2 = "onnx.Split"(%442, %3) {axis = 1 : si64, onnx_node_name = "Split_401_9"} : (tensor<1x40x45x80xf32>, tensor<2xi64>) -> (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) loc( |
|
%444 = "onnx.Concat"(%443 |
|
%445 = "onnx.Conv"(%444, %163, %126) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_403", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x40x45x80xf32>, tensor<40x40x3x3xf32>, tensor<40xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%446 = "onnx.Sigmoid"(%445) {onnx_node_name = "Sigmoid_404"} : (tensor<1x40x45x80xf32>) -> tensor<1x40x45x80xf32> loc( |
|
%447:2 = "onnx.Split"(%446, %3) {axis = 1 : si64, onnx_node_name = "Split_405_14"} : (tensor<1x40x45x80xf32>, tensor<2xi64>) -> (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) loc( |
|
%448 = "onnx.Sub"(%98, %447 |
|
%449 = "onnx.Mul"(%448, %176) {onnx_node_name = "Mul_412"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%450 = "onnx.Mul"(%447 |
|
%451 = "onnx.Concat"(%443 |
|
%452 = "onnx.Conv"(%451, %154, %168) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_408", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x40x45x80xf32>, tensor<20x40x3x3xf32>, tensor<20xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%453 = "onnx.Tanh"(%452) {onnx_node_name = "Tanh_409"} : (tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%454 = "onnx.Mul"(%447 |
|
%455 = "onnx.Add"(%449, %454) {onnx_node_name = "Add_414"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc( |
|
%456 = "onnx.Concat"(%443 |
|
%457 = "onnx.Resize"(%456, %6, %65, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_417_27"} : (tensor<1x40x45x80xf32>, none, tensor<4xf32>, none) -> tensor<1x40x90x160xf32> loc( |
|
%458 = "onnx.Concat"(%457, %196, %182) {axis = 1 : si64, onnx_node_name = "Concat_418"} : (tensor<1x40x90x160xf32>, tensor<1x16x90x160xf32>, tensor<1x3x90x160xf32>) -> tensor<1x59x90x160xf32> loc( |
|
%459 = "onnx.Conv"(%458, %24, %23) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_419", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x59x90x160xf32>, tensor<32x59x3x3xf32>, tensor<32xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%460 = "onnx.Relu"(%459) {onnx_node_name = "Relu_420"} : (tensor<1x32x90x160xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%461:2 = "onnx.Split"(%460, %2) {axis = 1 : si64, onnx_node_name = "Split_421_16"} : (tensor<1x32x90x160xf32>, tensor<2xi64>) -> (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) loc( |
|
%462 = "onnx.Concat"(%461 |
|
%463 = "onnx.Conv"(%462, %52, %102) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_423", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x32x90x160xf32>, tensor<32x32x3x3xf32>, tensor<32xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%464 = "onnx.Sigmoid"(%463) {onnx_node_name = "Sigmoid_424"} : (tensor<1x32x90x160xf32>) -> tensor<1x32x90x160xf32> loc( |
|
%465:2 = "onnx.Split"(%464, %2) {axis = 1 : si64, onnx_node_name = "Split_425_22"} : (tensor<1x32x90x160xf32>, tensor<2xi64>) -> (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) loc( |
|
%466 = "onnx.Sub"(%98, %465 |
|
%467 = "onnx.Mul"(%466, %175) {onnx_node_name = "Mul_432"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%468 = "onnx.Mul"(%465 |
|
%469 = "onnx.Concat"(%461 |
|
%470 = "onnx.Conv"(%469, %68, %170) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_428", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x32x90x160xf32>, tensor<16x32x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%471 = "onnx.Tanh"(%470) {onnx_node_name = "Tanh_429"} : (tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%472 = "onnx.Mul"(%465 |
|
%473 = "onnx.Add"(%467, %472) {onnx_node_name = "Add_434"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc( |
|
%474 = "onnx.Transpose"(%473) {onnx_node_name = "Transpose_448", perm = [0, 2, 3, 1]} : (tensor<1x16x90x160xf32>) -> tensor<1x90x160x16xf32> loc( |
|
%475 = "onnx.Transpose"(%455) {onnx_node_name = "Transpose_449", perm = [0, 2, 3, 1]} : (tensor<1x20x45x80xf32>) -> tensor<1x45x80x20xf32> loc( |
|
%476 = "onnx.Transpose"(%436) {onnx_node_name = "Transpose_450", perm = [0, 2, 3, 1]} : (tensor<1x40x23x40xf32>) -> tensor<1x23x40x40xf32> loc( |
|
%477 = "onnx.Transpose"(%417) {onnx_node_name = "Transpose_451", perm = [0, 2, 3, 1]} : (tensor<1x64x12x20xf32>) -> tensor<1x12x20x64xf32> loc( |
|
%478 = "onnx.Concat"(%461 |
|
%479 = "onnx.Resize"(%478, %6, %65, %6) { |
|
antialias = 0 : si64, |
|
coordinate_transformation_mode = "pytorch_half_pixel", |
|
cubic_coeff_a = -7.500000e-01 : f32, |
|
exclude_outside = 0 : si64, |
|
extrapolation_value = 0.000000e+00 : f32, |
|
keep_aspect_ratio_policy = "stretch", |
|
mode = "linear", |
|
nearest_mode = "floor", |
|
onnx_node_name = "Resize_437_28"} : (tensor<1x32x90x160xf32>, none, tensor<4xf32>, none) -> tensor<1x32x180x320xf32> loc( |
|
%480 = "onnx.Concat"(%479, %181) {axis = 1 : si64, onnx_node_name = "Concat_438"} : (tensor<1x32x180x320xf32>, tensor<1x3x180x320xf32>) -> tensor<1x35x180x320xf32> loc( |
|
%481 = "onnx.Conv"(%480, %22, %20) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_439", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x35x180x320xf32>, tensor<16x35x3x3xf32>, tensor<16xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%482 = "onnx.Relu"(%481) {onnx_node_name = "Relu_440"} : (tensor<1x16x180x320xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%483 = "onnx.Conv"(%482, %19, %18) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [3, 3], |
|
onnx_node_name = "Conv_441", |
|
pads = [1, 1, 1, 1], |
|
strides = [1, 1]} : (tensor<1x16x180x320xf32>, tensor<16x16x3x3xf32>, tensor<16xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%484 = "onnx.Relu"(%483) {onnx_node_name = "Relu_442"} : (tensor<1x16x180x320xf32>) -> tensor<1x16x180x320xf32> loc( |
|
%485 = "onnx.Conv"(%484, %115, %70) { |
|
auto_pad = "NOTSET", |
|
dilations = [1, 1], |
|
group = 1 : si64, |
|
kernel_shape = [1, 1], |
|
onnx_node_name = "Conv_443", |
|
pads = [0, 0, 0, 0], |
|
strides = [1, 1]} : (tensor<1x16x180x320xf32>, tensor<4x16x1x1xf32>, tensor<4xf32>) -> tensor<1x4x180x320xf32> loc( |
|
%486:2 = "onnx.Split"(%485, %1) {axis = 1 : si64, onnx_node_name = "Split_444_31"} : (tensor<1x4x180x320xf32>, tensor<2xi64>) -> (tensor<1x3x180x320xf32>, tensor<1x1x180x320xf32>) loc( |
|
%487 = "onnx.Add"(%486 |
|
%488 = "onnx.Clip"(%487, %69, %98) {onnx_node_name = "Clip_446_47"} : (tensor<1x3x180x320xf32>, tensor<f32>, tensor<f32>) -> tensor<1x3x180x320xf32> loc( |
|
%489 = "onnx.Transpose"(%488) {onnx_node_name = "Transpose_452", perm = [0, 2, 3, 1]} : (tensor<1x3x180x320xf32>) -> tensor<1x180x320x3xf32> loc( |
|
%490 = "onnx.Clip"(%486 |
|
%491 = "onnx.Transpose"(%490) {onnx_node_name = "Transpose_453", perm = [0, 2, 3, 1]} : (tensor<1x1x180x320xf32>) -> tensor<1x180x320x1xf32> loc( |
|
return %489, %491, %474, %475, %476, %477 : tensor<1x180x320x3xf32>, tensor<1x180x320x1xf32>, tensor<1x90x160x16xf32>, tensor<1x45x80x20xf32>, tensor<1x23x40x40xf32>, tensor<1x12x20x64xf32> loc( |
|
} loc( |
|
"onnx.EntryPoint"() {func = @main_graph} : () -> () loc( |
|
} loc( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|