#loc = loc(unknown) module attributes { llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.target_triple = "x86_64-unknown-linux-gnu", "onnx-mlir.symbol-postfix" = "onnxmodel.onnx.mlir", vaimlconf.device = "stx", vaimlconf.device_models = "${vaimlconf.install_dir}/data/deviceModels", vaimlconf.install_dir = "/usr/local/lib/python3.10/dist-packages/flexml/flexml_extras", vaimlconf.library_metadata = ["${vaimlconf.install_dir}/data/libraryMetadata/L1", "${vaimlconf.install_dir}/data/libraryMetadata/L2", "${vaimlconf.install_dir}/../../vitis_mllib/L1/metadata", "${vaimlconf.install_dir}/../../vitis_mllib/L2/metadata", "${vaimlconf.install_dir}/share/microkernel-tiling/tiling-recipe-specs"], vaimlconf.single_core_compiler = "chess"} { func.func @main_graph(%arg0: tensor<1x180x320x4xui8> {onnx.name = "src"} loc(unknown), %arg1: tensor<1x90x160x16xf32> {onnx.name = "r1i"} loc(unknown), %arg2: tensor<1x45x80x20xf32> {onnx.name = "r2i"} loc(unknown), %arg3: tensor<1x23x40x40xf32> {onnx.name = "r3i"} loc(unknown), %arg4: tensor<1x12x20x64xf32> {onnx.name = "r4i"} loc(unknown)) -> (tensor<1x180x320x3xf32> {onnx.name = "fgr"}, tensor<1x180x320x1xf32> {onnx.name = "pha"}, tensor<1x90x160x16xf32> {onnx.name = "r1o"}, tensor<1x45x80x20xf32> {onnx.name = "r2o"}, tensor<1x23x40x40xf32> {onnx.name = "r3o"}, tensor<1x12x20x64xf32> {onnx.name = "r4o"}) { %0 = onnx.Constant dense<[[[-4.850000e-01]], [[-4.560000e-01]], [[-4.060000e-01]]]> : tensor<3x1x1xf32> loc(#loc) %1 = onnx.Constant dense<[3, 1]> : tensor<2xi64> loc(#loc) %2 = onnx.Constant dense<16> : tensor<2xi64> loc(#loc) %3 = onnx.Constant dense<20> : tensor<2xi64> loc(#loc) %4 = onnx.Constant dense<40> : tensor<2xi64> loc(#loc) %5 = onnx.Constant dense<64> : tensor<2xi64> loc(#loc) %6 = "onnx.NoValue"() {onnx_node_name = "onnx.NoValue_26", value} : () -> none loc(#loc) %7 = onnx.Constant dense_resource<__elided__> : tensor<112xf32> loc(#loc1) %8 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc2) %9 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc(#loc3) %10 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc(#loc4) %11 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc5) %12 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc(#loc6) %13 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc(#loc7) %14 = onnx.Constant dense<3> : tensor<1xi64> loc(#loc8) %15 = onnx.Constant dense_resource<__elided__> : tensor<128x960x1x1xf32> loc(#loc9) %16 = onnx.Constant dense<2.550000e+02> : tensor loc(#loc10) %17 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc(#loc11) %18 = onnx.Constant dense<[-0.257117867, -0.332320929, -0.342930794, 0.882337093, -0.811691761, 1.04650748, 1.993430e-01, 0.471133053, 0.0722430944, 0.554342687, 1.3374486, 0.48697716, 1.31853354, 0.714223623, 1.16618729, 0.738572299]> : tensor<16xf32> loc(#loc12) %19 = onnx.Constant dense_resource<__elided__> : tensor<16x16x3x3xf32> loc(#loc13) %20 = onnx.Constant dense<[0.281471759, -0.0896756947, 0.0517602414, -0.266139954, 0.132527292, 0.684469878, -0.0511226803, 0.859402895, 0.504835129, 0.569725394, 0.217058718, -0.0543790609, -0.30986914, 0.451566547, 0.166573063, 0.415171683]> : tensor<16xf32> loc(#loc14) %21 = onnx.Constant dense_resource<__elided__> : tensor<24x64x1x1xf32> loc(#loc15) %22 = onnx.Constant dense_resource<__elided__> : tensor<16x35x3x3xf32> loc(#loc16) %23 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc(#loc17) %24 = onnx.Constant dense_resource<__elided__> : tensor<32x59x3x3xf32> loc(#loc18) %25 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc(#loc19) %26 = onnx.Constant dense_resource<__elided__> : tensor<128x960x1x1xf32> loc(#loc20) %27 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc(#loc21) %28 = onnx.Constant dense_resource<__elided__> : tensor<80x171x3x3xf32> loc(#loc22) %29 = onnx.Constant dense<[[[2.290000e-01]], [[2.240000e-01]], [[2.250000e-01]]]> : tensor<3x1x1xf32> loc(#loc23) %30 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc(#loc24) %31 = onnx.Constant dense_resource<__elided__> : tensor<160x960x1x1xf32> loc(#loc25) %32 = onnx.Constant dense_resource<__elided__> : tensor<960x1x5x5xf32> loc(#loc26) %33 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc27) %34 = onnx.Constant dense_resource<__elided__> : tensor<960x240x1x1xf32> loc(#loc28) %35 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc(#loc29) %36 = onnx.Constant dense_resource<__elided__> : tensor<960x240x1x1xf32> loc(#loc30) %37 = onnx.Constant dense_resource<__elided__> : tensor<960x1x5x5xf32> loc(#loc31) %38 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc(#loc32) %39 = onnx.Constant dense_resource<__elided__> : tensor<160x672x1x1xf32> loc(#loc33) %40 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc(#loc34) %41 = onnx.Constant dense_resource<__elided__> : tensor<120x40x1x1xf32> loc(#loc35) %42 = onnx.Constant dense_resource<__elided__> : tensor<72x1x5x5xf32> loc(#loc36) %43 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc(#loc37) %44 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc38) %45 = onnx.Constant dense_resource<__elided__> : tensor<80x200x1x1xf32> loc(#loc39) %46 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc(#loc40) %47 = onnx.Constant dense_resource<__elided__> : tensor<240x40x1x1xf32> loc(#loc41) %48 = onnx.Constant dense_resource<__elided__> : tensor<240x1x3x3xf32> loc(#loc42) %49 = onnx.Constant dense_resource<__elided__> : tensor<480x120x1x1xf32> loc(#loc43) %50 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc44) %51 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc(#loc45) %52 = onnx.Constant dense_resource<__elided__> : tensor<32x32x3x3xf32> loc(#loc46) %53 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc47) %54 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc(#loc48) %55 = onnx.Constant dense_resource<__elided__> : tensor<200x80x1x1xf32> loc(#loc49) %56 = onnx.Constant dense_resource<__elided__> : tensor<184x1x3x3xf32> loc(#loc50) %57 = onnx.Constant dense_resource<__elided__> : tensor<200x1x3x3xf32> loc(#loc51) %58 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc(#loc52) %59 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc(#loc53) %60 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc(#loc54) %61 = onnx.Constant dense_resource<__elided__> : tensor<16x16x1x1xf32> loc(#loc55) %62 = onnx.Constant dense_resource<__elided__> : tensor<64x128x3x3xf32> loc(#loc56) %63 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc(#loc57) %64 = onnx.Constant dense_resource<__elided__> : tensor<40x120x1x1xf32> loc(#loc58) %65 = onnx.Constant dense<[1.000000e+00, 1.000000e+00, 2.000000e+00, 2.000000e+00]> : tensor<4xf32> loc(#loc59) %66 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc60) %67 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc(#loc61) %68 = onnx.Constant dense_resource<__elided__> : tensor<16x32x3x3xf32> loc(#loc62) %69 = onnx.Constant dense<0.000000e+00> : tensor loc(#loc63) %70 = onnx.Constant dense<[0.00409470545, 0.00284675183, 0.00200544903, 0.124928087]> : tensor<4xf32> loc(#loc64) %71 = onnx.Constant dense<3.000000e+00> : tensor loc(#loc65) %72 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc(#loc66) %73 = onnx.Constant dense_resource<__elided__> : tensor<200xf32> loc(#loc67) %74 = onnx.Constant dense_resource<__elided__> : tensor<72x1x3x3xf32> loc(#loc68) %75 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc69) %76 = onnx.Constant dense_resource<__elided__> : tensor<120x1x5x5xf32> loc(#loc70) %77 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc(#loc71) %78 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc(#loc72) %79 = onnx.Constant dense_resource<__elided__> : tensor<672x112x1x1xf32> loc(#loc73) %80 = onnx.Constant dense_resource<__elided__> : tensor<120x40x1x1xf32> loc(#loc74) %81 = onnx.Constant dense<23> : tensor<1xi64> loc(#loc75) %82 = onnx.Constant dense_resource<__elided__> : tensor<16x3x3x3xf32> loc(#loc76) %83 = onnx.Constant dense_resource<__elided__> : tensor<40x120x1x1xf32> loc(#loc77) %84 = onnx.Constant dense<2> : tensor<1xi64> loc(#loc78) %85 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc79) %86 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc(#loc80) %87 = onnx.Constant dense_resource<__elided__> : tensor<184x1x3x3xf32> loc(#loc81) %88 = onnx.Constant dense_resource<__elided__> : tensor<120xf32> loc(#loc82) %89 = onnx.Constant dense<1> : tensor<1xi64> loc(#loc83) %90 = onnx.Constant dense_resource<__elided__> : tensor<40x107x3x3xf32> loc(#loc84) %91 = onnx.Constant dense_resource<__elided__> : tensor<672x168x1x1xf32> loc(#loc85) %92 = onnx.Constant dense<6.000000e+00> : tensor loc(#loc86) %93 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc(#loc87) %94 = onnx.Constant dense_resource<__elided__> : tensor<168xf32> loc(#loc88) %95 = onnx.Constant dense_resource<__elided__> : tensor<112x672x1x1xf32> loc(#loc89) %96 = onnx.Constant dense_resource<__elided__> : tensor<112x480x1x1xf32> loc(#loc90) %97 = onnx.Constant dense_resource<__elided__> : tensor<112xf32> loc(#loc91) %98 = onnx.Constant dense<1.000000e+00> : tensor loc(#loc92) %99 = onnx.Constant dense_resource<__elided__> : tensor<24x72x1x1xf32> loc(#loc93) %100 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc(#loc94) %101 = onnx.Constant dense_resource<__elided__> : tensor<120x32x1x1xf32> loc(#loc95) %102 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc(#loc96) %103 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc(#loc97) %104 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc(#loc98) %105 = onnx.Constant dense<0> : tensor<1xi64> loc(#loc99) %106 = onnx.Constant dense_resource<__elided__> : tensor<120x480x1x1xf32> loc(#loc100) %107 = onnx.Constant dense_resource<__elided__> : tensor<672x1x5x5xf32> loc(#loc101) %108 = onnx.Constant dense_resource<__elided__> : tensor<184xf32> loc(#loc102) %109 = onnx.Constant dense_resource<__elided__> : tensor<184x80x1x1xf32> loc(#loc103) %110 = onnx.Constant dense_resource<__elided__> : tensor<480x80x1x1xf32> loc(#loc104) %111 = onnx.Constant dense_resource<__elided__> : tensor<80x184x1x1xf32> loc(#loc105) %112 = onnx.Constant dense_resource<__elided__> : tensor<672x168x1x1xf32> loc(#loc106) %113 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc(#loc107) %114 = onnx.Constant dense_resource<__elided__> : tensor<80x80x3x3xf32> loc(#loc108) %115 = onnx.Constant dense_resource<__elided__> : tensor<4x16x1x1xf32> loc(#loc109) %116 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc(#loc110) %117 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc111) %118 = onnx.Constant dense_resource<__elided__> : tensor<64x1x3x3xf32> loc(#loc112) %119 = onnx.Constant dense_resource<__elided__> : tensor<240x960x1x1xf32> loc(#loc113) %120 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc(#loc114) %121 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc(#loc115) %122 = onnx.Constant dense_resource<__elided__> : tensor<80x184x1x1xf32> loc(#loc116) %123 = onnx.Constant dense_resource<__elided__> : tensor<480x1x3x3xf32> loc(#loc117) %124 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc(#loc118) %125 = onnx.Constant dense<[-1.31068802, 0.586562276, 5.67538071, 0.551027656, 2.19523954, 3.83854461, 0.0600251146, -2.18778157, -1.5404067, 2.044780e+00, -4.23846388, 0.703142225, -8.39978456E-5, 3.50620365, -0.531753063, -5.91183185]> : tensor<16xf32> loc(#loc119) %126 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc(#loc120) %127 = onnx.Constant dense_resource<__elided__> : tensor<128x128x3x3xf32> loc(#loc121) %128 = onnx.Constant dense_resource<__elided__> : tensor<672x112x1x1xf32> loc(#loc122) %129 = onnx.Constant dense_resource<__elided__> : tensor<32x120x1x1xf32> loc(#loc123) %130 = onnx.Constant dense_resource<__elided__> : tensor<32xf32> loc(#loc124) %131 = onnx.Constant dense_resource<__elided__> : tensor<64x16x1x1xf32> loc(#loc125) %132 = onnx.Constant dense_resource<__elided__> : tensor<672x1x3x3xf32> loc(#loc126) %133 = onnx.Constant dense_resource<__elided__> : tensor<168x672x1x1xf32> loc(#loc127) %134 = onnx.Constant dense_resource<__elided__> : tensor<168x672x1x1xf32> loc(#loc128) %135 = onnx.Constant dense_resource<__elided__> : tensor<200xf32> loc(#loc129) %136 = onnx.Constant dense_resource<__elided__> : tensor<480xf32> loc(#loc130) %137 = onnx.Constant dense_resource<__elided__> : tensor<120x32x1x1xf32> loc(#loc131) %138 = onnx.Constant dense_resource<__elided__> : tensor<672xf32> loc(#loc132) %139 = onnx.Constant dense<45> : tensor<1xi64> loc(#loc133) %140 = onnx.Constant dense_resource<__elided__> : tensor<80xf32> loc(#loc134) %141 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc135) %142 = onnx.Constant dense_resource<__elided__> : tensor<24x72x1x1xf32> loc(#loc136) %143 = onnx.Constant dense_resource<__elided__> : tensor<240xf32> loc(#loc137) %144 = onnx.Constant dense_resource<__elided__> : tensor<40x72x1x1xf32> loc(#loc138) %145 = onnx.Constant dense_resource<__elided__> : tensor<168xf32> loc(#loc139) %146 = onnx.Constant dense_resource<__elided__> : tensor<32x120x1x1xf32> loc(#loc140) %147 = onnx.Constant dense_resource<__elided__> : tensor<128xf32> loc(#loc141) %148 = onnx.Constant dense_resource<__elided__> : tensor<128xf32> loc(#loc142) %149 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc(#loc143) %150 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc(#loc144) %151 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc145) %152 = onnx.Constant dense_resource<__elided__> : tensor<160xf32> loc(#loc146) %153 = onnx.Constant dense_resource<__elided__> : tensor<80x240x1x1xf32> loc(#loc147) %154 = onnx.Constant dense_resource<__elided__> : tensor<20x40x3x3xf32> loc(#loc148) %155 = onnx.Constant dense_resource<__elided__> : tensor<184x80x1x1xf32> loc(#loc149) %156 = onnx.Constant dense_resource<__elided__> : tensor<160x960x1x1xf32> loc(#loc150) %157 = onnx.Constant dense_resource<__elided__> : tensor<24xf32> loc(#loc151) %158 = onnx.Constant dense_resource<__elided__> : tensor<960xf32> loc(#loc152) %159 = onnx.Constant dense_resource<__elided__> : tensor<40x80x3x3xf32> loc(#loc153) %160 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc(#loc154) %161 = onnx.Constant dense<[-4.38406658, -1.06764766E-8, -0.704851329, -1.05036237E-8, -4.89120433E-9, 1.53249037, -0.0617836975, 2.16366434, 0.0416259095, -4.12739087E-9, -3.50249429E-9, -7.75795516E-9, -4.04315559E-9, 0.292217016, -0.010752866, 1.63358212]> : tensor<16xf32> loc(#loc155) %162 = onnx.Constant dense_resource<__elided__> : tensor<40xf32> loc(#loc156) %163 = onnx.Constant dense_resource<__elided__> : tensor<40x40x3x3xf32> loc(#loc157) %164 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc(#loc158) %165 = onnx.Constant dense_resource<__elided__> : tensor<16x1x3x3xf32> loc(#loc159) %166 = onnx.Constant dense_resource<__elided__> : tensor<72x24x1x1xf32> loc(#loc160) %167 = onnx.Constant dense_resource<__elided__> : tensor<240x960x1x1xf32> loc(#loc161) %168 = onnx.Constant dense_resource<__elided__> : tensor<20xf32> loc(#loc162) %169 = onnx.Constant dense_resource<__elided__> : tensor<72xf32> loc(#loc163) %170 = onnx.Constant dense<[0.00544366054, 0.154367775, 0.115729354, 0.171141103, -0.168815523, 0.0456937179, 0.188233331, 0.0151384082, 0.242783383, -0.139173314, -0.24988465, -9.479440e-02, -0.055940561, -0.0512795448, -0.0738077834, 0.0476587117]> : tensor<16xf32> loc(#loc164) %171 = onnx.Constant dense_resource<__elided__> : tensor<120x1x5x5xf32> loc(#loc165) %172 = onnx.Constant dense_resource<__elided__> : tensor<960x160x1x1xf32> loc(#loc166) %173 = onnx.Constant dense<[2.98861408, -1.22985208, 2.43826318, -3.98499513, 4.62797928, 2.54142761, 2.45345306, 2.64061832, 2.13576674, 2.30800247, -0.198341176, -0.427822977, -1.09159482, 4.85548782, 2.70597649, 2.6902504]> : tensor<16xf32> loc(#loc167) %174 = onnx.Constant dense_resource<__elided__> : tensor<64xf32> loc(#loc168) %175 = "onnx.Transpose"(%arg1) {onnx_node_name = "Transpose_9", perm = [0, 3, 1, 2]} : (tensor<1x90x160x16xf32>) -> tensor<1x16x90x160xf32> loc(#loc169) %176 = "onnx.Transpose"(%arg2) {onnx_node_name = "Transpose_10", perm = [0, 3, 1, 2]} : (tensor<1x45x80x20xf32>) -> tensor<1x20x45x80xf32> loc(#loc170) %177 = "onnx.Transpose"(%arg3) {onnx_node_name = "Transpose_11", perm = [0, 3, 1, 2]} : (tensor<1x23x40x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc171) %178 = "onnx.Cast"(%arg0) { onnx_node_name = "Cast_0", saturate = 1 : si64, to = f32} : (tensor<1x180x320x4xui8>) -> tensor<1x180x320x4xf32> loc(#loc172) %179 = "onnx.Div"(%178, %16) {onnx_node_name = "Div_2"} : (tensor<1x180x320x4xf32>, tensor) -> tensor<1x180x320x4xf32> loc(#loc173) %180 = "onnx.Slice"(%179, %105, %14, %14, %89) {onnx_node_name = "Slice_7"} : (tensor<1x180x320x4xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x180x320x3xf32> loc(#loc174) %181 = "onnx.Transpose"(%180) {onnx_node_name = "Transpose_8", perm = [0, 3, 1, 2]} : (tensor<1x180x320x3xf32>) -> tensor<1x3x180x320xf32> loc(#loc175) %182 = "onnx.AveragePool"(%181) { auto_pad = "NOTSET", ceil_mode = 1 : si64, count_include_pad = 0 : si64, kernel_shape = [2, 2], onnx_node_name = "AveragePool_346", pads = [0, 0, 0, 0], strides = [2, 2]} : (tensor<1x3x180x320xf32>) -> tensor<1x3x90x160xf32> loc(#loc176) %183 = "onnx.AveragePool"(%182) { auto_pad = "NOTSET", ceil_mode = 1 : si64, count_include_pad = 0 : si64, kernel_shape = [2, 2], onnx_node_name = "AveragePool_347", pads = [0, 0, 0, 0], strides = [2, 2]} : (tensor<1x3x90x160xf32>) -> tensor<1x3x45x80xf32> loc(#loc177) %184 = "onnx.AveragePool"(%183) { auto_pad = "NOTSET", ceil_mode = 1 : si64, count_include_pad = 0 : si64, kernel_shape = [2, 2], onnx_node_name = "AveragePool_348", pads = [0, 0, 0, 0], strides = [2, 2]} : (tensor<1x3x45x80xf32>) -> tensor<1x3x23x40xf32> loc(#loc178) %185 = "onnx.Transpose"(%arg4) {onnx_node_name = "Transpose_12", perm = [0, 3, 1, 2]} : (tensor<1x12x20x64xf32>) -> tensor<1x64x12x20xf32> loc(#loc179) %186 = "onnx.Add"(%181, %0) {onnx_node_name = "Sub_14-Initializer_398_48"} : (tensor<1x3x180x320xf32>, tensor<3x1x1xf32>) -> tensor<1x3x180x320xf32> loc(#loc487) %187 = "onnx.Div"(%186, %29) {onnx_node_name = "Div_16"} : (tensor<1x3x180x320xf32>, tensor<3x1x1xf32>) -> tensor<1x3x180x320xf32> loc(#loc182) %188 = "onnx.Conv"(%187, %82, %173) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_17", pads = [1, 1, 1, 1], strides = [2, 2]} : (tensor<1x3x180x320xf32>, tensor<16x3x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc(#loc183) %189 = "onnx.Add"(%188, %71) {onnx_node_name = "Add_19"} : (tensor<1x16x90x160xf32>, tensor) -> tensor<1x16x90x160xf32> loc(#loc184) %190 = "onnx.Clip"(%189, %69, %92) {onnx_node_name = "Clip_22_50"} : (tensor<1x16x90x160xf32>, tensor, tensor) -> tensor<1x16x90x160xf32> loc(#loc185) %191 = "onnx.Div"(%190, %92) {onnx_node_name = "Div_24"} : (tensor<1x16x90x160xf32>, tensor) -> tensor<1x16x90x160xf32> loc(#loc186) %192 = "onnx.Mul"(%188, %191) {onnx_node_name = "Mul_25"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc187) %193 = "onnx.Conv"(%192, %165, %161) { auto_pad = "NOTSET", dilations = [1, 1], group = 16 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_26", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<16x1x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc(#loc188) %194 = "onnx.Relu"(%193) {onnx_node_name = "Relu_27"} : (tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc189) %195 = "onnx.Conv"(%194, %61, %125) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_28", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<16x16x1x1xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc(#loc190) %196 = "onnx.Add"(%195, %192) {onnx_node_name = "Add_29"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc191) %197 = "onnx.Conv"(%196, %131, %174) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_30", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x16x90x160xf32>, tensor<64x16x1x1xf32>, tensor<64xf32>) -> tensor<1x64x90x160xf32> loc(#loc192) %198 = "onnx.Relu"(%197) {onnx_node_name = "Relu_31"} : (tensor<1x64x90x160xf32>) -> tensor<1x64x90x160xf32> loc(#loc193) %199 = "onnx.Conv"(%198, %118, %86) { auto_pad = "NOTSET", dilations = [1, 1], group = 64 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_32", pads = [1, 1, 1, 1], strides = [2, 2]} : (tensor<1x64x90x160xf32>, tensor<64x1x3x3xf32>, tensor<64xf32>) -> tensor<1x64x45x80xf32> loc(#loc194) %200 = "onnx.Relu"(%199) {onnx_node_name = "Relu_33"} : (tensor<1x64x45x80xf32>) -> tensor<1x64x45x80xf32> loc(#loc195) %201 = "onnx.Conv"(%200, %21, %10) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_34", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x64x45x80xf32>, tensor<24x64x1x1xf32>, tensor<24xf32>) -> tensor<1x24x45x80xf32> loc(#loc196) %202 = "onnx.Conv"(%201, %116, %72) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_35", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x24x45x80xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc(#loc197) %203 = "onnx.Relu"(%202) {onnx_node_name = "Relu_36"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc(#loc198) %204 = "onnx.Conv"(%203, %74, %58) { auto_pad = "NOTSET", dilations = [1, 1], group = 72 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_37", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x72x45x80xf32>, tensor<72x1x3x3xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc(#loc199) %205 = "onnx.Relu"(%204) {onnx_node_name = "Relu_38"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc(#loc200) %206 = "onnx.Conv"(%205, %99, %40) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_39", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x72x45x80xf32>, tensor<24x72x1x1xf32>, tensor<24xf32>) -> tensor<1x24x45x80xf32> loc(#loc201) %207 = "onnx.Add"(%206, %201) {onnx_node_name = "Add_40"} : (tensor<1x24x45x80xf32>, tensor<1x24x45x80xf32>) -> tensor<1x24x45x80xf32> loc(#loc202) %208 = "onnx.Conv"(%207, %166, %169) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_41", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x24x45x80xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x45x80xf32> loc(#loc203) %209 = "onnx.Relu"(%208) {onnx_node_name = "Relu_42"} : (tensor<1x72x45x80xf32>) -> tensor<1x72x45x80xf32> loc(#loc204) %210 = "onnx.Conv"(%209, %42, %149) { auto_pad = "NOTSET", dilations = [1, 1], group = 72 : si64, kernel_shape = [5, 5], onnx_node_name = "Conv_43", pads = [2, 2, 2, 2], strides = [2, 2]} : (tensor<1x72x45x80xf32>, tensor<72x1x5x5xf32>, tensor<72xf32>) -> tensor<1x72x23x40xf32> loc(#loc205) %211 = "onnx.Relu"(%210) {onnx_node_name = "Relu_44"} : (tensor<1x72x23x40xf32>) -> tensor<1x72x23x40xf32> loc(#loc206) %212 = "onnx.ReduceMeanV13"(%211) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_45_12"} : (tensor<1x72x23x40xf32>) -> tensor<1x72x1x1xf32> loc(#loc207) %213 = "onnx.Conv"(%212, %142, %157) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_46", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x72x1x1xf32>, tensor<24x72x1x1xf32>, tensor<24xf32>) -> tensor<1x24x1x1xf32> loc(#loc208) %214 = "onnx.Relu"(%213) {onnx_node_name = "Relu_47"} : (tensor<1x24x1x1xf32>) -> tensor<1x24x1x1xf32> loc(#loc209) %215 = "onnx.Conv"(%214, %160, %150) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_48", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x24x1x1xf32>, tensor<72x24x1x1xf32>, tensor<72xf32>) -> tensor<1x72x1x1xf32> loc(#loc210) %216 = "onnx.Add"(%215, %71) {onnx_node_name = "Add_50"} : (tensor<1x72x1x1xf32>, tensor) -> tensor<1x72x1x1xf32> loc(#loc211) %217 = "onnx.Clip"(%216, %69, %92) {onnx_node_name = "Clip_53_39"} : (tensor<1x72x1x1xf32>, tensor, tensor) -> tensor<1x72x1x1xf32> loc(#loc212) %218 = "onnx.Div"(%217, %92) {onnx_node_name = "Div_55"} : (tensor<1x72x1x1xf32>, tensor) -> tensor<1x72x1x1xf32> loc(#loc213) %219 = "onnx.Mul"(%218, %211) {onnx_node_name = "Mul_56"} : (tensor<1x72x1x1xf32>, tensor<1x72x23x40xf32>) -> tensor<1x72x23x40xf32> loc(#loc214) %220 = "onnx.Conv"(%219, %144, %9) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_57", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x72x23x40xf32>, tensor<40x72x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc(#loc215) %221 = "onnx.Conv"(%220, %80, %11) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_58", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<120x40x1x1xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc(#loc216) %222 = "onnx.Relu"(%221) {onnx_node_name = "Relu_59"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc(#loc217) %223 = "onnx.Conv"(%222, %171, %75) { auto_pad = "NOTSET", dilations = [1, 1], group = 120 : si64, kernel_shape = [5, 5], onnx_node_name = "Conv_60", pads = [2, 2, 2, 2], strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<120x1x5x5xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc(#loc218) %224 = "onnx.Relu"(%223) {onnx_node_name = "Relu_61"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc(#loc219) %225 = "onnx.ReduceMeanV13"(%224) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_62_5"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x1x1xf32> loc(#loc220) %226 = "onnx.Conv"(%225, %129, %17) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_63", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<32x120x1x1xf32>, tensor<32xf32>) -> tensor<1x32x1x1xf32> loc(#loc221) %227 = "onnx.Relu"(%226) {onnx_node_name = "Relu_64"} : (tensor<1x32x1x1xf32>) -> tensor<1x32x1x1xf32> loc(#loc222) %228 = "onnx.Conv"(%227, %137, %44) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_65", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x32x1x1xf32>, tensor<120x32x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc(#loc223) %229 = "onnx.Add"(%228, %71) {onnx_node_name = "Add_67"} : (tensor<1x120x1x1xf32>, tensor) -> tensor<1x120x1x1xf32> loc(#loc224) %230 = "onnx.Clip"(%229, %69, %92) {onnx_node_name = "Clip_70_45"} : (tensor<1x120x1x1xf32>, tensor, tensor) -> tensor<1x120x1x1xf32> loc(#loc225) %231 = "onnx.Div"(%230, %92) {onnx_node_name = "Div_72"} : (tensor<1x120x1x1xf32>, tensor) -> tensor<1x120x1x1xf32> loc(#loc226) %232 = "onnx.Mul"(%231, %224) {onnx_node_name = "Mul_73"} : (tensor<1x120x1x1xf32>, tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc(#loc227) %233 = "onnx.Conv"(%232, %64, %43) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_74", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<40x120x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc(#loc228) %234 = "onnx.Add"(%233, %220) {onnx_node_name = "Add_75"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc229) %235 = "onnx.Conv"(%234, %41, %88) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_76", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<120x40x1x1xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc(#loc230) %236 = "onnx.Relu"(%235) {onnx_node_name = "Relu_77"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc(#loc231) %237 = "onnx.Conv"(%236, %76, %53) { auto_pad = "NOTSET", dilations = [1, 1], group = 120 : si64, kernel_shape = [5, 5], onnx_node_name = "Conv_78", pads = [2, 2, 2, 2], strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<120x1x5x5xf32>, tensor<120xf32>) -> tensor<1x120x23x40xf32> loc(#loc232) %238 = "onnx.Relu"(%237) {onnx_node_name = "Relu_79"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc(#loc233) %239 = "onnx.ReduceMeanV13"(%238) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_80_6"} : (tensor<1x120x23x40xf32>) -> tensor<1x120x1x1xf32> loc(#loc234) %240 = "onnx.Conv"(%239, %146, %130) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_81", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<32x120x1x1xf32>, tensor<32xf32>) -> tensor<1x32x1x1xf32> loc(#loc235) %241 = "onnx.Relu"(%240) {onnx_node_name = "Relu_82"} : (tensor<1x32x1x1xf32>) -> tensor<1x32x1x1xf32> loc(#loc236) %242 = "onnx.Conv"(%241, %101, %8) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_83", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x32x1x1xf32>, tensor<120x32x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc(#loc237) %243 = "onnx.Add"(%242, %71) {onnx_node_name = "Add_85"} : (tensor<1x120x1x1xf32>, tensor) -> tensor<1x120x1x1xf32> loc(#loc238) %244 = "onnx.Clip"(%243, %69, %92) {onnx_node_name = "Clip_88_52"} : (tensor<1x120x1x1xf32>, tensor, tensor) -> tensor<1x120x1x1xf32> loc(#loc239) %245 = "onnx.Div"(%244, %92) {onnx_node_name = "Div_90"} : (tensor<1x120x1x1xf32>, tensor) -> tensor<1x120x1x1xf32> loc(#loc240) %246 = "onnx.Mul"(%245, %238) {onnx_node_name = "Mul_91"} : (tensor<1x120x1x1xf32>, tensor<1x120x23x40xf32>) -> tensor<1x120x23x40xf32> loc(#loc241) %247 = "onnx.Conv"(%246, %83, %104) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_92", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x120x23x40xf32>, tensor<40x120x1x1xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc(#loc242) %248 = "onnx.Add"(%247, %234) {onnx_node_name = "Add_93"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc243) %249 = "onnx.Conv"(%248, %47, %113) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_94", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x40x23x40xf32>, tensor<240x40x1x1xf32>, tensor<240xf32>) -> tensor<1x240x23x40xf32> loc(#loc244) %250 = "onnx.Add"(%249, %71) {onnx_node_name = "Add_96"} : (tensor<1x240x23x40xf32>, tensor) -> tensor<1x240x23x40xf32> loc(#loc245) %251 = "onnx.Clip"(%250, %69, %92) {onnx_node_name = "Clip_99_43"} : (tensor<1x240x23x40xf32>, tensor, tensor) -> tensor<1x240x23x40xf32> loc(#loc246) %252 = "onnx.Div"(%251, %92) {onnx_node_name = "Div_101"} : (tensor<1x240x23x40xf32>, tensor) -> tensor<1x240x23x40xf32> loc(#loc247) %253 = "onnx.Mul"(%249, %252) {onnx_node_name = "Mul_102"} : (tensor<1x240x23x40xf32>, tensor<1x240x23x40xf32>) -> tensor<1x240x23x40xf32> loc(#loc248) %254 = "onnx.Conv"(%253, %48, %77) { auto_pad = "NOTSET", dilations = [1, 1], group = 240 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_103", pads = [1, 1, 1, 1], strides = [2, 2]} : (tensor<1x240x23x40xf32>, tensor<240x1x3x3xf32>, tensor<240xf32>) -> tensor<1x240x12x20xf32> loc(#loc249) %255 = "onnx.Add"(%254, %71) {onnx_node_name = "Add_105"} : (tensor<1x240x12x20xf32>, tensor) -> tensor<1x240x12x20xf32> loc(#loc250) %256 = "onnx.Clip"(%255, %69, %92) {onnx_node_name = "Clip_108_25"} : (tensor<1x240x12x20xf32>, tensor, tensor) -> tensor<1x240x12x20xf32> loc(#loc251) %257 = "onnx.Div"(%256, %92) {onnx_node_name = "Div_110"} : (tensor<1x240x12x20xf32>, tensor) -> tensor<1x240x12x20xf32> loc(#loc252) %258 = "onnx.Mul"(%254, %257) {onnx_node_name = "Mul_111"} : (tensor<1x240x12x20xf32>, tensor<1x240x12x20xf32>) -> tensor<1x240x12x20xf32> loc(#loc253) %259 = "onnx.Conv"(%258, %153, %67) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_112", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x240x12x20xf32>, tensor<80x240x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc(#loc254) %260 = "onnx.Conv"(%259, %55, %135) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_113", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<200x80x1x1xf32>, tensor<200xf32>) -> tensor<1x200x12x20xf32> loc(#loc255) %261 = "onnx.Add"(%260, %71) {onnx_node_name = "Add_115"} : (tensor<1x200x12x20xf32>, tensor) -> tensor<1x200x12x20xf32> loc(#loc256) %262 = "onnx.Clip"(%261, %69, %92) {onnx_node_name = "Clip_118_44"} : (tensor<1x200x12x20xf32>, tensor, tensor) -> tensor<1x200x12x20xf32> loc(#loc257) %263 = "onnx.Div"(%262, %92) {onnx_node_name = "Div_120"} : (tensor<1x200x12x20xf32>, tensor) -> tensor<1x200x12x20xf32> loc(#loc258) %264 = "onnx.Mul"(%260, %263) {onnx_node_name = "Mul_121"} : (tensor<1x200x12x20xf32>, tensor<1x200x12x20xf32>) -> tensor<1x200x12x20xf32> loc(#loc259) %265 = "onnx.Conv"(%264, %57, %73) { auto_pad = "NOTSET", dilations = [1, 1], group = 200 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_122", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x200x12x20xf32>, tensor<200x1x3x3xf32>, tensor<200xf32>) -> tensor<1x200x12x20xf32> loc(#loc260) %266 = "onnx.Add"(%265, %71) {onnx_node_name = "Add_124"} : (tensor<1x200x12x20xf32>, tensor) -> tensor<1x200x12x20xf32> loc(#loc261) %267 = "onnx.Clip"(%266, %69, %92) {onnx_node_name = "Clip_127_32"} : (tensor<1x200x12x20xf32>, tensor, tensor) -> tensor<1x200x12x20xf32> loc(#loc262) %268 = "onnx.Div"(%267, %92) {onnx_node_name = "Div_129"} : (tensor<1x200x12x20xf32>, tensor) -> tensor<1x200x12x20xf32> loc(#loc263) %269 = "onnx.Mul"(%265, %268) {onnx_node_name = "Mul_130"} : (tensor<1x200x12x20xf32>, tensor<1x200x12x20xf32>) -> tensor<1x200x12x20xf32> loc(#loc264) %270 = "onnx.Conv"(%269, %45, %59) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_131", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x200x12x20xf32>, tensor<80x200x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc(#loc265) %271 = "onnx.Add"(%270, %259) {onnx_node_name = "Add_132"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc(#loc266) %272 = "onnx.Conv"(%271, %109, %103) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_133", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<184x80x1x1xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc(#loc267) %273 = "onnx.Add"(%272, %71) {onnx_node_name = "Add_135"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc268) %274 = "onnx.Clip"(%273, %69, %92) {onnx_node_name = "Clip_138_1"} : (tensor<1x184x12x20xf32>, tensor, tensor) -> tensor<1x184x12x20xf32> loc(#loc269) %275 = "onnx.Div"(%274, %92) {onnx_node_name = "Div_140"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc270) %276 = "onnx.Mul"(%272, %275) {onnx_node_name = "Mul_141"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc(#loc271) %277 = "onnx.Conv"(%276, %87, %108) { auto_pad = "NOTSET", dilations = [1, 1], group = 184 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_142", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<184x1x3x3xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc(#loc272) %278 = "onnx.Add"(%277, %71) {onnx_node_name = "Add_144"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc273) %279 = "onnx.Clip"(%278, %69, %92) {onnx_node_name = "Clip_147_11"} : (tensor<1x184x12x20xf32>, tensor, tensor) -> tensor<1x184x12x20xf32> loc(#loc274) %280 = "onnx.Div"(%279, %92) {onnx_node_name = "Div_149"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc275) %281 = "onnx.Mul"(%277, %280) {onnx_node_name = "Mul_150"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc(#loc276) %282 = "onnx.Conv"(%281, %111, %93) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_151", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<80x184x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc(#loc277) %283 = "onnx.Add"(%282, %271) {onnx_node_name = "Add_152"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc(#loc278) %284 = "onnx.Conv"(%283, %155, %12) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_153", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<184x80x1x1xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc(#loc279) %285 = "onnx.Add"(%284, %71) {onnx_node_name = "Add_155"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc280) %286 = "onnx.Clip"(%285, %69, %92) {onnx_node_name = "Clip_158_33"} : (tensor<1x184x12x20xf32>, tensor, tensor) -> tensor<1x184x12x20xf32> loc(#loc281) %287 = "onnx.Div"(%286, %92) {onnx_node_name = "Div_160"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc282) %288 = "onnx.Mul"(%284, %287) {onnx_node_name = "Mul_161"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc(#loc283) %289 = "onnx.Conv"(%288, %56, %51) { auto_pad = "NOTSET", dilations = [1, 1], group = 184 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_162", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<184x1x3x3xf32>, tensor<184xf32>) -> tensor<1x184x12x20xf32> loc(#loc284) %290 = "onnx.Add"(%289, %71) {onnx_node_name = "Add_164"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc285) %291 = "onnx.Clip"(%290, %69, %92) {onnx_node_name = "Clip_167_46"} : (tensor<1x184x12x20xf32>, tensor, tensor) -> tensor<1x184x12x20xf32> loc(#loc286) %292 = "onnx.Div"(%291, %92) {onnx_node_name = "Div_169"} : (tensor<1x184x12x20xf32>, tensor) -> tensor<1x184x12x20xf32> loc(#loc287) %293 = "onnx.Mul"(%289, %292) {onnx_node_name = "Mul_170"} : (tensor<1x184x12x20xf32>, tensor<1x184x12x20xf32>) -> tensor<1x184x12x20xf32> loc(#loc288) %294 = "onnx.Conv"(%293, %122, %13) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_171", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x184x12x20xf32>, tensor<80x184x1x1xf32>, tensor<80xf32>) -> tensor<1x80x12x20xf32> loc(#loc289) %295 = "onnx.Add"(%294, %283) {onnx_node_name = "Add_172"} : (tensor<1x80x12x20xf32>, tensor<1x80x12x20xf32>) -> tensor<1x80x12x20xf32> loc(#loc290) %296 = "onnx.Conv"(%295, %110, %136) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_173", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x80x12x20xf32>, tensor<480x80x1x1xf32>, tensor<480xf32>) -> tensor<1x480x12x20xf32> loc(#loc291) %297 = "onnx.Add"(%296, %71) {onnx_node_name = "Add_175"} : (tensor<1x480x12x20xf32>, tensor) -> tensor<1x480x12x20xf32> loc(#loc292) %298 = "onnx.Clip"(%297, %69, %92) {onnx_node_name = "Clip_178_24"} : (tensor<1x480x12x20xf32>, tensor, tensor) -> tensor<1x480x12x20xf32> loc(#loc293) %299 = "onnx.Div"(%298, %92) {onnx_node_name = "Div_180"} : (tensor<1x480x12x20xf32>, tensor) -> tensor<1x480x12x20xf32> loc(#loc294) %300 = "onnx.Mul"(%296, %299) {onnx_node_name = "Mul_181"} : (tensor<1x480x12x20xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc(#loc295) %301 = "onnx.Conv"(%300, %123, %60) { auto_pad = "NOTSET", dilations = [1, 1], group = 480 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_182", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x480x12x20xf32>, tensor<480x1x3x3xf32>, tensor<480xf32>) -> tensor<1x480x12x20xf32> loc(#loc296) %302 = "onnx.Add"(%301, %71) {onnx_node_name = "Add_184"} : (tensor<1x480x12x20xf32>, tensor) -> tensor<1x480x12x20xf32> loc(#loc297) %303 = "onnx.Clip"(%302, %69, %92) {onnx_node_name = "Clip_187_23"} : (tensor<1x480x12x20xf32>, tensor, tensor) -> tensor<1x480x12x20xf32> loc(#loc298) %304 = "onnx.Div"(%303, %92) {onnx_node_name = "Div_189"} : (tensor<1x480x12x20xf32>, tensor) -> tensor<1x480x12x20xf32> loc(#loc299) %305 = "onnx.Mul"(%301, %304) {onnx_node_name = "Mul_190"} : (tensor<1x480x12x20xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc(#loc300) %306 = "onnx.ReduceMeanV13"(%305) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_191_37"} : (tensor<1x480x12x20xf32>) -> tensor<1x480x1x1xf32> loc(#loc301) %307 = "onnx.Conv"(%306, %106, %50) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_192", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x480x1x1xf32>, tensor<120x480x1x1xf32>, tensor<120xf32>) -> tensor<1x120x1x1xf32> loc(#loc302) %308 = "onnx.Relu"(%307) {onnx_node_name = "Relu_193"} : (tensor<1x120x1x1xf32>) -> tensor<1x120x1x1xf32> loc(#loc303) %309 = "onnx.Conv"(%308, %49, %63) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_194", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x120x1x1xf32>, tensor<480x120x1x1xf32>, tensor<480xf32>) -> tensor<1x480x1x1xf32> loc(#loc304) %310 = "onnx.Add"(%309, %71) {onnx_node_name = "Add_196"} : (tensor<1x480x1x1xf32>, tensor) -> tensor<1x480x1x1xf32> loc(#loc305) %311 = "onnx.Clip"(%310, %69, %92) {onnx_node_name = "Clip_199_41"} : (tensor<1x480x1x1xf32>, tensor, tensor) -> tensor<1x480x1x1xf32> loc(#loc306) %312 = "onnx.Div"(%311, %92) {onnx_node_name = "Div_201"} : (tensor<1x480x1x1xf32>, tensor) -> tensor<1x480x1x1xf32> loc(#loc307) %313 = "onnx.Mul"(%312, %305) {onnx_node_name = "Mul_202"} : (tensor<1x480x1x1xf32>, tensor<1x480x12x20xf32>) -> tensor<1x480x12x20xf32> loc(#loc308) %314 = "onnx.Conv"(%313, %96, %7) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_203", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x480x12x20xf32>, tensor<112x480x1x1xf32>, tensor<112xf32>) -> tensor<1x112x12x20xf32> loc(#loc309) %315 = "onnx.Conv"(%314, %79, %138) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_204", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x112x12x20xf32>, tensor<672x112x1x1xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc(#loc310) %316 = "onnx.Add"(%315, %71) {onnx_node_name = "Add_206"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc311) %317 = "onnx.Clip"(%316, %69, %92) {onnx_node_name = "Clip_209_0"} : (tensor<1x672x12x20xf32>, tensor, tensor) -> tensor<1x672x12x20xf32> loc(#loc312) %318 = "onnx.Div"(%317, %92) {onnx_node_name = "Div_211"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc313) %319 = "onnx.Mul"(%315, %318) {onnx_node_name = "Mul_212"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc(#loc314) %320 = "onnx.Conv"(%319, %132, %100) { auto_pad = "NOTSET", dilations = [1, 1], group = 672 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_213", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<672x1x3x3xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc(#loc315) %321 = "onnx.Add"(%320, %71) {onnx_node_name = "Add_215"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc316) %322 = "onnx.Clip"(%321, %69, %92) {onnx_node_name = "Clip_218_51"} : (tensor<1x672x12x20xf32>, tensor, tensor) -> tensor<1x672x12x20xf32> loc(#loc317) %323 = "onnx.Div"(%322, %92) {onnx_node_name = "Div_220"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc318) %324 = "onnx.Mul"(%320, %323) {onnx_node_name = "Mul_221"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc(#loc319) %325 = "onnx.ReduceMeanV13"(%324) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_222_2"} : (tensor<1x672x12x20xf32>) -> tensor<1x672x1x1xf32> loc(#loc320) %326 = "onnx.Conv"(%325, %133, %145) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_223", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x672x1x1xf32>, tensor<168x672x1x1xf32>, tensor<168xf32>) -> tensor<1x168x1x1xf32> loc(#loc321) %327 = "onnx.Relu"(%326) {onnx_node_name = "Relu_224"} : (tensor<1x168x1x1xf32>) -> tensor<1x168x1x1xf32> loc(#loc322) %328 = "onnx.Conv"(%327, %91, %124) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_225", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x168x1x1xf32>, tensor<672x168x1x1xf32>, tensor<672xf32>) -> tensor<1x672x1x1xf32> loc(#loc323) %329 = "onnx.Add"(%328, %71) {onnx_node_name = "Add_227"} : (tensor<1x672x1x1xf32>, tensor) -> tensor<1x672x1x1xf32> loc(#loc324) %330 = "onnx.Clip"(%329, %69, %92) {onnx_node_name = "Clip_230_53"} : (tensor<1x672x1x1xf32>, tensor, tensor) -> tensor<1x672x1x1xf32> loc(#loc325) %331 = "onnx.Div"(%330, %92) {onnx_node_name = "Div_232"} : (tensor<1x672x1x1xf32>, tensor) -> tensor<1x672x1x1xf32> loc(#loc326) %332 = "onnx.Mul"(%331, %324) {onnx_node_name = "Mul_233"} : (tensor<1x672x1x1xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc(#loc327) %333 = "onnx.Conv"(%332, %95, %97) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_234", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<112x672x1x1xf32>, tensor<112xf32>) -> tensor<1x112x12x20xf32> loc(#loc328) %334 = "onnx.Add"(%333, %314) {onnx_node_name = "Add_235"} : (tensor<1x112x12x20xf32>, tensor<1x112x12x20xf32>) -> tensor<1x112x12x20xf32> loc(#loc329) %335 = "onnx.Conv"(%334, %128, %120) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_236", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x112x12x20xf32>, tensor<672x112x1x1xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc(#loc330) %336 = "onnx.Add"(%335, %71) {onnx_node_name = "Add_238"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc331) %337 = "onnx.Clip"(%336, %69, %92) {onnx_node_name = "Clip_241_17"} : (tensor<1x672x12x20xf32>, tensor, tensor) -> tensor<1x672x12x20xf32> loc(#loc332) %338 = "onnx.Div"(%337, %92) {onnx_node_name = "Div_243"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc333) %339 = "onnx.Mul"(%335, %338) {onnx_node_name = "Mul_244"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc(#loc334) %340 = "onnx.Conv"(%339, %107, %46) { auto_pad = "NOTSET", dilations = [2, 2], group = 672 : si64, kernel_shape = [5, 5], onnx_node_name = "Conv_245", pads = [4, 4, 4, 4], strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<672x1x5x5xf32>, tensor<672xf32>) -> tensor<1x672x12x20xf32> loc(#loc335) %341 = "onnx.Add"(%340, %71) {onnx_node_name = "Add_247"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc336) %342 = "onnx.Clip"(%341, %69, %92) {onnx_node_name = "Clip_250_15"} : (tensor<1x672x12x20xf32>, tensor, tensor) -> tensor<1x672x12x20xf32> loc(#loc337) %343 = "onnx.Div"(%342, %92) {onnx_node_name = "Div_252"} : (tensor<1x672x12x20xf32>, tensor) -> tensor<1x672x12x20xf32> loc(#loc338) %344 = "onnx.Mul"(%340, %343) {onnx_node_name = "Mul_253"} : (tensor<1x672x12x20xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc(#loc339) %345 = "onnx.ReduceMeanV13"(%344) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_254_36"} : (tensor<1x672x12x20xf32>) -> tensor<1x672x1x1xf32> loc(#loc340) %346 = "onnx.Conv"(%345, %134, %94) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_255", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x672x1x1xf32>, tensor<168x672x1x1xf32>, tensor<168xf32>) -> tensor<1x168x1x1xf32> loc(#loc341) %347 = "onnx.Relu"(%346) {onnx_node_name = "Relu_256"} : (tensor<1x168x1x1xf32>) -> tensor<1x168x1x1xf32> loc(#loc342) %348 = "onnx.Conv"(%347, %112, %54) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_257", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x168x1x1xf32>, tensor<672x168x1x1xf32>, tensor<672xf32>) -> tensor<1x672x1x1xf32> loc(#loc343) %349 = "onnx.Add"(%348, %71) {onnx_node_name = "Add_259"} : (tensor<1x672x1x1xf32>, tensor) -> tensor<1x672x1x1xf32> loc(#loc344) %350 = "onnx.Clip"(%349, %69, %92) {onnx_node_name = "Clip_262_20"} : (tensor<1x672x1x1xf32>, tensor, tensor) -> tensor<1x672x1x1xf32> loc(#loc345) %351 = "onnx.Div"(%350, %92) {onnx_node_name = "Div_264"} : (tensor<1x672x1x1xf32>, tensor) -> tensor<1x672x1x1xf32> loc(#loc346) %352 = "onnx.Mul"(%351, %344) {onnx_node_name = "Mul_265"} : (tensor<1x672x1x1xf32>, tensor<1x672x12x20xf32>) -> tensor<1x672x12x20xf32> loc(#loc347) %353 = "onnx.Conv"(%352, %39, %38) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_266", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x672x12x20xf32>, tensor<160x672x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc(#loc348) %354 = "onnx.Conv"(%353, %164, %141) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_267", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc(#loc349) %355 = "onnx.Add"(%354, %71) {onnx_node_name = "Add_269"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc350) %356 = "onnx.Clip"(%355, %69, %92) {onnx_node_name = "Clip_272_34"} : (tensor<1x960x12x20xf32>, tensor, tensor) -> tensor<1x960x12x20xf32> loc(#loc351) %357 = "onnx.Div"(%356, %92) {onnx_node_name = "Div_274"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc352) %358 = "onnx.Mul"(%354, %357) {onnx_node_name = "Mul_275"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc353) %359 = "onnx.Conv"(%358, %37, %85) { auto_pad = "NOTSET", dilations = [2, 2], group = 960 : si64, kernel_shape = [5, 5], onnx_node_name = "Conv_276", pads = [4, 4, 4, 4], strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<960x1x5x5xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc(#loc354) %360 = "onnx.Add"(%359, %71) {onnx_node_name = "Add_278"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc355) %361 = "onnx.Clip"(%360, %69, %92) {onnx_node_name = "Clip_281_18"} : (tensor<1x960x12x20xf32>, tensor, tensor) -> tensor<1x960x12x20xf32> loc(#loc356) %362 = "onnx.Div"(%361, %92) {onnx_node_name = "Div_283"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc357) %363 = "onnx.Mul"(%359, %362) {onnx_node_name = "Mul_284"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc358) %364 = "onnx.ReduceMeanV13"(%363) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_285_38"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc(#loc359) %365 = "onnx.Conv"(%364, %167, %78) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_286", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<240x960x1x1xf32>, tensor<240xf32>) -> tensor<1x240x1x1xf32> loc(#loc360) %366 = "onnx.Relu"(%365) {onnx_node_name = "Relu_287"} : (tensor<1x240x1x1xf32>) -> tensor<1x240x1x1xf32> loc(#loc361) %367 = "onnx.Conv"(%366, %36, %66) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_288", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x240x1x1xf32>, tensor<960x240x1x1xf32>, tensor<960xf32>) -> tensor<1x960x1x1xf32> loc(#loc362) %368 = "onnx.Add"(%367, %71) {onnx_node_name = "Add_290"} : (tensor<1x960x1x1xf32>, tensor) -> tensor<1x960x1x1xf32> loc(#loc363) %369 = "onnx.Clip"(%368, %69, %92) {onnx_node_name = "Clip_293_3"} : (tensor<1x960x1x1xf32>, tensor, tensor) -> tensor<1x960x1x1xf32> loc(#loc364) %370 = "onnx.Div"(%369, %92) {onnx_node_name = "Div_295"} : (tensor<1x960x1x1xf32>, tensor) -> tensor<1x960x1x1xf32> loc(#loc365) %371 = "onnx.Mul"(%370, %363) {onnx_node_name = "Mul_296"} : (tensor<1x960x1x1xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc366) %372 = "onnx.Conv"(%371, %156, %35) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_297", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<160x960x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc(#loc367) %373 = "onnx.Add"(%372, %353) {onnx_node_name = "Add_298"} : (tensor<1x160x12x20xf32>, tensor<1x160x12x20xf32>) -> tensor<1x160x12x20xf32> loc(#loc368) %374 = "onnx.Conv"(%373, %172, %33) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_299", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc(#loc369) %375 = "onnx.Add"(%374, %71) {onnx_node_name = "Add_301"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc370) %376 = "onnx.Clip"(%375, %69, %92) {onnx_node_name = "Clip_304_8"} : (tensor<1x960x12x20xf32>, tensor, tensor) -> tensor<1x960x12x20xf32> loc(#loc371) %377 = "onnx.Div"(%376, %92) {onnx_node_name = "Div_306"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc372) %378 = "onnx.Mul"(%374, %377) {onnx_node_name = "Mul_307"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc373) %379 = "onnx.Conv"(%378, %32, %117) { auto_pad = "NOTSET", dilations = [2, 2], group = 960 : si64, kernel_shape = [5, 5], onnx_node_name = "Conv_308", pads = [4, 4, 4, 4], strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<960x1x5x5xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc(#loc374) %380 = "onnx.Add"(%379, %71) {onnx_node_name = "Add_310"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc375) %381 = "onnx.Clip"(%380, %69, %92) {onnx_node_name = "Clip_313_40"} : (tensor<1x960x12x20xf32>, tensor, tensor) -> tensor<1x960x12x20xf32> loc(#loc376) %382 = "onnx.Div"(%381, %92) {onnx_node_name = "Div_315"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc377) %383 = "onnx.Mul"(%379, %382) {onnx_node_name = "Mul_316"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc378) %384 = "onnx.ReduceMeanV13"(%383) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_317_7"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc(#loc379) %385 = "onnx.Conv"(%384, %119, %143) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_318", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<240x960x1x1xf32>, tensor<240xf32>) -> tensor<1x240x1x1xf32> loc(#loc380) %386 = "onnx.Relu"(%385) {onnx_node_name = "Relu_319"} : (tensor<1x240x1x1xf32>) -> tensor<1x240x1x1xf32> loc(#loc381) %387 = "onnx.Conv"(%386, %34, %151) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_320", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x240x1x1xf32>, tensor<960x240x1x1xf32>, tensor<960xf32>) -> tensor<1x960x1x1xf32> loc(#loc382) %388 = "onnx.Add"(%387, %71) {onnx_node_name = "Add_322"} : (tensor<1x960x1x1xf32>, tensor) -> tensor<1x960x1x1xf32> loc(#loc383) %389 = "onnx.Clip"(%388, %69, %92) {onnx_node_name = "Clip_325_10"} : (tensor<1x960x1x1xf32>, tensor, tensor) -> tensor<1x960x1x1xf32> loc(#loc384) %390 = "onnx.Div"(%389, %92) {onnx_node_name = "Div_327"} : (tensor<1x960x1x1xf32>, tensor) -> tensor<1x960x1x1xf32> loc(#loc385) %391 = "onnx.Mul"(%390, %383) {onnx_node_name = "Mul_328"} : (tensor<1x960x1x1xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc386) %392 = "onnx.Conv"(%391, %31, %152) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_329", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<160x960x1x1xf32>, tensor<160xf32>) -> tensor<1x160x12x20xf32> loc(#loc387) %393 = "onnx.Add"(%392, %373) {onnx_node_name = "Add_330"} : (tensor<1x160x12x20xf32>, tensor<1x160x12x20xf32>) -> tensor<1x160x12x20xf32> loc(#loc388) %394 = "onnx.Conv"(%393, %30, %158) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_331", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x160x12x20xf32>, tensor<960x160x1x1xf32>, tensor<960xf32>) -> tensor<1x960x12x20xf32> loc(#loc389) %395 = "onnx.Add"(%394, %71) {onnx_node_name = "Add_333"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc390) %396 = "onnx.Clip"(%395, %69, %92) {onnx_node_name = "Clip_336_42"} : (tensor<1x960x12x20xf32>, tensor, tensor) -> tensor<1x960x12x20xf32> loc(#loc391) %397 = "onnx.Div"(%396, %92) {onnx_node_name = "Div_338"} : (tensor<1x960x12x20xf32>, tensor) -> tensor<1x960x12x20xf32> loc(#loc392) %398 = "onnx.Mul"(%394, %397) {onnx_node_name = "Mul_339"} : (tensor<1x960x12x20xf32>, tensor<1x960x12x20xf32>) -> tensor<1x960x12x20xf32> loc(#loc393) %399 = "onnx.Conv"(%398, %26, %148) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_340", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x960x12x20xf32>, tensor<128x960x1x1xf32>, tensor<128xf32>) -> tensor<1x128x12x20xf32> loc(#loc394) %400 = "onnx.Relu"(%399) {onnx_node_name = "Relu_341"} : (tensor<1x128x12x20xf32>) -> tensor<1x128x12x20xf32> loc(#loc395) %401 = "onnx.ReduceMeanV13"(%398) { axes = [2, 3], keepdims = 1 : si64, onnx_node_name = "GlobalAveragePool_342_49"} : (tensor<1x960x12x20xf32>) -> tensor<1x960x1x1xf32> loc(#loc396) %402 = "onnx.Conv"(%401, %15, %6) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_343", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x960x1x1xf32>, tensor<128x960x1x1xf32>, none) -> tensor<1x128x1x1xf32> loc(#loc397) %403 = "onnx.Sigmoid"(%402) {onnx_node_name = "Sigmoid_344"} : (tensor<1x128x1x1xf32>) -> tensor<1x128x1x1xf32> loc(#loc398) %404 = "onnx.Mul"(%400, %403) {onnx_node_name = "Mul_345"} : (tensor<1x128x12x20xf32>, tensor<1x128x1x1xf32>) -> tensor<1x128x12x20xf32> loc(#loc399) %405:2 = "onnx.Split"(%404, %5) {axis = 1 : si64, onnx_node_name = "Split_349_29"} : (tensor<1x128x12x20xf32>, tensor<2xi64>) -> (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) loc(#loc400) %406 = "onnx.Concat"(%405#1, %185) {axis = 1 : si64, onnx_node_name = "Concat_350"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x128x12x20xf32> loc(#loc401) %407 = "onnx.Conv"(%406, %127, %147) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_351", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x128x12x20xf32>, tensor<128x128x3x3xf32>, tensor<128xf32>) -> tensor<1x128x12x20xf32> loc(#loc402) %408 = "onnx.Sigmoid"(%407) {onnx_node_name = "Sigmoid_352"} : (tensor<1x128x12x20xf32>) -> tensor<1x128x12x20xf32> loc(#loc403) %409:2 = "onnx.Split"(%408, %5) {axis = 1 : si64, onnx_node_name = "Split_353_13"} : (tensor<1x128x12x20xf32>, tensor<2xi64>) -> (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) loc(#loc404) %410 = "onnx.Sub"(%98, %409#1) {onnx_node_name = "Sub_359"} : (tensor, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc(#loc405) %411 = "onnx.Mul"(%410, %185) {onnx_node_name = "Mul_360"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc(#loc406) %412 = "onnx.Mul"(%409#0, %185) {onnx_node_name = "Mul_354"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc(#loc407) %413 = "onnx.Concat"(%405#1, %412) {axis = 1 : si64, onnx_node_name = "Concat_355"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x128x12x20xf32> loc(#loc408) %414 = "onnx.Conv"(%413, %62, %121) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_356", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x128x12x20xf32>, tensor<64x128x3x3xf32>, tensor<64xf32>) -> tensor<1x64x12x20xf32> loc(#loc409) %415 = "onnx.Tanh"(%414) {onnx_node_name = "Tanh_357"} : (tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc(#loc410) %416 = "onnx.Mul"(%409#1, %415) {onnx_node_name = "Mul_361"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc(#loc411) %417 = "onnx.Add"(%411, %416) {onnx_node_name = "Add_362"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x64x12x20xf32> loc(#loc412) %418 = "onnx.Concat"(%405#0, %417) {axis = 1 : si64, onnx_node_name = "Concat_363"} : (tensor<1x64x12x20xf32>, tensor<1x64x12x20xf32>) -> tensor<1x128x12x20xf32> loc(#loc413) %419 = "onnx.Resize"(%418, %6, %65, %6) { antialias = 0 : si64, coordinate_transformation_mode = "pytorch_half_pixel", cubic_coeff_a = -7.500000e-01 : f32, exclude_outside = 0 : si64, extrapolation_value = 0.000000e+00 : f32, keep_aspect_ratio_policy = "stretch", mode = "linear", nearest_mode = "floor", onnx_node_name = "Resize_365_21"} : (tensor<1x128x12x20xf32>, none, tensor<4xf32>, none) -> tensor<1x128x24x40xf32> loc(#loc414) %420 = "onnx.Slice"(%419, %105, %81, %84, %89) {onnx_node_name = "Slice_371"} : (tensor<1x128x24x40xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x128x23x40xf32> loc(#loc415) %421 = "onnx.Concat"(%420, %248, %184) {axis = 1 : si64, onnx_node_name = "Concat_372"} : (tensor<1x128x23x40xf32>, tensor<1x40x23x40xf32>, tensor<1x3x23x40xf32>) -> tensor<1x171x23x40xf32> loc(#loc416) %422 = "onnx.Conv"(%421, %28, %27) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_373", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x171x23x40xf32>, tensor<80x171x3x3xf32>, tensor<80xf32>) -> tensor<1x80x23x40xf32> loc(#loc417) %423 = "onnx.Relu"(%422) {onnx_node_name = "Relu_374"} : (tensor<1x80x23x40xf32>) -> tensor<1x80x23x40xf32> loc(#loc418) %424:2 = "onnx.Split"(%423, %4) {axis = 1 : si64, onnx_node_name = "Split_375_19"} : (tensor<1x80x23x40xf32>, tensor<2xi64>) -> (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) loc(#loc419) %425 = "onnx.Concat"(%424#1, %177) {axis = 1 : si64, onnx_node_name = "Concat_376"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x80x23x40xf32> loc(#loc420) %426 = "onnx.Conv"(%425, %114, %140) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_377", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x80x23x40xf32>, tensor<80x80x3x3xf32>, tensor<80xf32>) -> tensor<1x80x23x40xf32> loc(#loc421) %427 = "onnx.Sigmoid"(%426) {onnx_node_name = "Sigmoid_378"} : (tensor<1x80x23x40xf32>) -> tensor<1x80x23x40xf32> loc(#loc422) %428:2 = "onnx.Split"(%427, %4) {axis = 1 : si64, onnx_node_name = "Split_379_35"} : (tensor<1x80x23x40xf32>, tensor<2xi64>) -> (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) loc(#loc423) %429 = "onnx.Sub"(%98, %428#1) {onnx_node_name = "Sub_385"} : (tensor, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc424) %430 = "onnx.Mul"(%429, %177) {onnx_node_name = "Mul_386"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc425) %431 = "onnx.Mul"(%428#0, %177) {onnx_node_name = "Mul_380"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc426) %432 = "onnx.Concat"(%424#1, %431) {axis = 1 : si64, onnx_node_name = "Concat_381"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x80x23x40xf32> loc(#loc427) %433 = "onnx.Conv"(%432, %159, %162) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_382", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x80x23x40xf32>, tensor<40x80x3x3xf32>, tensor<40xf32>) -> tensor<1x40x23x40xf32> loc(#loc428) %434 = "onnx.Tanh"(%433) {onnx_node_name = "Tanh_383"} : (tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc429) %435 = "onnx.Mul"(%428#1, %434) {onnx_node_name = "Mul_387"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc430) %436 = "onnx.Add"(%430, %435) {onnx_node_name = "Add_388"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x40x23x40xf32> loc(#loc431) %437 = "onnx.Concat"(%424#0, %436) {axis = 1 : si64, onnx_node_name = "Concat_389"} : (tensor<1x40x23x40xf32>, tensor<1x40x23x40xf32>) -> tensor<1x80x23x40xf32> loc(#loc432) %438 = "onnx.Resize"(%437, %6, %65, %6) { antialias = 0 : si64, coordinate_transformation_mode = "pytorch_half_pixel", cubic_coeff_a = -7.500000e-01 : f32, exclude_outside = 0 : si64, extrapolation_value = 0.000000e+00 : f32, keep_aspect_ratio_policy = "stretch", mode = "linear", nearest_mode = "floor", onnx_node_name = "Resize_391_4"} : (tensor<1x80x23x40xf32>, none, tensor<4xf32>, none) -> tensor<1x80x46x80xf32> loc(#loc433) %439 = "onnx.Slice"(%438, %105, %139, %84, %89) {onnx_node_name = "Slice_397"} : (tensor<1x80x46x80xf32>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>, tensor<1xi64>) -> tensor<1x80x45x80xf32> loc(#loc434) %440 = "onnx.Concat"(%439, %207, %183) {axis = 1 : si64, onnx_node_name = "Concat_398"} : (tensor<1x80x45x80xf32>, tensor<1x24x45x80xf32>, tensor<1x3x45x80xf32>) -> tensor<1x107x45x80xf32> loc(#loc435) %441 = "onnx.Conv"(%440, %90, %25) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_399", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x107x45x80xf32>, tensor<40x107x3x3xf32>, tensor<40xf32>) -> tensor<1x40x45x80xf32> loc(#loc436) %442 = "onnx.Relu"(%441) {onnx_node_name = "Relu_400"} : (tensor<1x40x45x80xf32>) -> tensor<1x40x45x80xf32> loc(#loc437) %443:2 = "onnx.Split"(%442, %3) {axis = 1 : si64, onnx_node_name = "Split_401_9"} : (tensor<1x40x45x80xf32>, tensor<2xi64>) -> (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) loc(#loc438) %444 = "onnx.Concat"(%443#1, %176) {axis = 1 : si64, onnx_node_name = "Concat_402"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x40x45x80xf32> loc(#loc439) %445 = "onnx.Conv"(%444, %163, %126) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_403", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x40x45x80xf32>, tensor<40x40x3x3xf32>, tensor<40xf32>) -> tensor<1x40x45x80xf32> loc(#loc440) %446 = "onnx.Sigmoid"(%445) {onnx_node_name = "Sigmoid_404"} : (tensor<1x40x45x80xf32>) -> tensor<1x40x45x80xf32> loc(#loc441) %447:2 = "onnx.Split"(%446, %3) {axis = 1 : si64, onnx_node_name = "Split_405_14"} : (tensor<1x40x45x80xf32>, tensor<2xi64>) -> (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) loc(#loc442) %448 = "onnx.Sub"(%98, %447#1) {onnx_node_name = "Sub_411"} : (tensor, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc(#loc443) %449 = "onnx.Mul"(%448, %176) {onnx_node_name = "Mul_412"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc(#loc444) %450 = "onnx.Mul"(%447#0, %176) {onnx_node_name = "Mul_406"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc(#loc445) %451 = "onnx.Concat"(%443#1, %450) {axis = 1 : si64, onnx_node_name = "Concat_407"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x40x45x80xf32> loc(#loc446) %452 = "onnx.Conv"(%451, %154, %168) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_408", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x40x45x80xf32>, tensor<20x40x3x3xf32>, tensor<20xf32>) -> tensor<1x20x45x80xf32> loc(#loc447) %453 = "onnx.Tanh"(%452) {onnx_node_name = "Tanh_409"} : (tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc(#loc448) %454 = "onnx.Mul"(%447#1, %453) {onnx_node_name = "Mul_413"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc(#loc449) %455 = "onnx.Add"(%449, %454) {onnx_node_name = "Add_414"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x20x45x80xf32> loc(#loc450) %456 = "onnx.Concat"(%443#0, %455) {axis = 1 : si64, onnx_node_name = "Concat_415"} : (tensor<1x20x45x80xf32>, tensor<1x20x45x80xf32>) -> tensor<1x40x45x80xf32> loc(#loc451) %457 = "onnx.Resize"(%456, %6, %65, %6) { antialias = 0 : si64, coordinate_transformation_mode = "pytorch_half_pixel", cubic_coeff_a = -7.500000e-01 : f32, exclude_outside = 0 : si64, extrapolation_value = 0.000000e+00 : f32, keep_aspect_ratio_policy = "stretch", mode = "linear", nearest_mode = "floor", onnx_node_name = "Resize_417_27"} : (tensor<1x40x45x80xf32>, none, tensor<4xf32>, none) -> tensor<1x40x90x160xf32> loc(#loc452) %458 = "onnx.Concat"(%457, %196, %182) {axis = 1 : si64, onnx_node_name = "Concat_418"} : (tensor<1x40x90x160xf32>, tensor<1x16x90x160xf32>, tensor<1x3x90x160xf32>) -> tensor<1x59x90x160xf32> loc(#loc453) %459 = "onnx.Conv"(%458, %24, %23) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_419", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x59x90x160xf32>, tensor<32x59x3x3xf32>, tensor<32xf32>) -> tensor<1x32x90x160xf32> loc(#loc454) %460 = "onnx.Relu"(%459) {onnx_node_name = "Relu_420"} : (tensor<1x32x90x160xf32>) -> tensor<1x32x90x160xf32> loc(#loc455) %461:2 = "onnx.Split"(%460, %2) {axis = 1 : si64, onnx_node_name = "Split_421_16"} : (tensor<1x32x90x160xf32>, tensor<2xi64>) -> (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) loc(#loc456) %462 = "onnx.Concat"(%461#1, %175) {axis = 1 : si64, onnx_node_name = "Concat_422"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x32x90x160xf32> loc(#loc457) %463 = "onnx.Conv"(%462, %52, %102) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_423", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x32x90x160xf32>, tensor<32x32x3x3xf32>, tensor<32xf32>) -> tensor<1x32x90x160xf32> loc(#loc458) %464 = "onnx.Sigmoid"(%463) {onnx_node_name = "Sigmoid_424"} : (tensor<1x32x90x160xf32>) -> tensor<1x32x90x160xf32> loc(#loc459) %465:2 = "onnx.Split"(%464, %2) {axis = 1 : si64, onnx_node_name = "Split_425_22"} : (tensor<1x32x90x160xf32>, tensor<2xi64>) -> (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) loc(#loc460) %466 = "onnx.Sub"(%98, %465#1) {onnx_node_name = "Sub_431"} : (tensor, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc461) %467 = "onnx.Mul"(%466, %175) {onnx_node_name = "Mul_432"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc462) %468 = "onnx.Mul"(%465#0, %175) {onnx_node_name = "Mul_426"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc463) %469 = "onnx.Concat"(%461#1, %468) {axis = 1 : si64, onnx_node_name = "Concat_427"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x32x90x160xf32> loc(#loc464) %470 = "onnx.Conv"(%469, %68, %170) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_428", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x32x90x160xf32>, tensor<16x32x3x3xf32>, tensor<16xf32>) -> tensor<1x16x90x160xf32> loc(#loc465) %471 = "onnx.Tanh"(%470) {onnx_node_name = "Tanh_429"} : (tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc466) %472 = "onnx.Mul"(%465#1, %471) {onnx_node_name = "Mul_433"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc467) %473 = "onnx.Add"(%467, %472) {onnx_node_name = "Add_434"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x16x90x160xf32> loc(#loc468) %474 = "onnx.Transpose"(%473) {onnx_node_name = "Transpose_448", perm = [0, 2, 3, 1]} : (tensor<1x16x90x160xf32>) -> tensor<1x90x160x16xf32> loc(#loc469) %475 = "onnx.Transpose"(%455) {onnx_node_name = "Transpose_449", perm = [0, 2, 3, 1]} : (tensor<1x20x45x80xf32>) -> tensor<1x45x80x20xf32> loc(#loc470) %476 = "onnx.Transpose"(%436) {onnx_node_name = "Transpose_450", perm = [0, 2, 3, 1]} : (tensor<1x40x23x40xf32>) -> tensor<1x23x40x40xf32> loc(#loc471) %477 = "onnx.Transpose"(%417) {onnx_node_name = "Transpose_451", perm = [0, 2, 3, 1]} : (tensor<1x64x12x20xf32>) -> tensor<1x12x20x64xf32> loc(#loc472) %478 = "onnx.Concat"(%461#0, %473) {axis = 1 : si64, onnx_node_name = "Concat_435"} : (tensor<1x16x90x160xf32>, tensor<1x16x90x160xf32>) -> tensor<1x32x90x160xf32> loc(#loc473) %479 = "onnx.Resize"(%478, %6, %65, %6) { antialias = 0 : si64, coordinate_transformation_mode = "pytorch_half_pixel", cubic_coeff_a = -7.500000e-01 : f32, exclude_outside = 0 : si64, extrapolation_value = 0.000000e+00 : f32, keep_aspect_ratio_policy = "stretch", mode = "linear", nearest_mode = "floor", onnx_node_name = "Resize_437_28"} : (tensor<1x32x90x160xf32>, none, tensor<4xf32>, none) -> tensor<1x32x180x320xf32> loc(#loc474) %480 = "onnx.Concat"(%479, %181) {axis = 1 : si64, onnx_node_name = "Concat_438"} : (tensor<1x32x180x320xf32>, tensor<1x3x180x320xf32>) -> tensor<1x35x180x320xf32> loc(#loc475) %481 = "onnx.Conv"(%480, %22, %20) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_439", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x35x180x320xf32>, tensor<16x35x3x3xf32>, tensor<16xf32>) -> tensor<1x16x180x320xf32> loc(#loc476) %482 = "onnx.Relu"(%481) {onnx_node_name = "Relu_440"} : (tensor<1x16x180x320xf32>) -> tensor<1x16x180x320xf32> loc(#loc477) %483 = "onnx.Conv"(%482, %19, %18) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [3, 3], onnx_node_name = "Conv_441", pads = [1, 1, 1, 1], strides = [1, 1]} : (tensor<1x16x180x320xf32>, tensor<16x16x3x3xf32>, tensor<16xf32>) -> tensor<1x16x180x320xf32> loc(#loc478) %484 = "onnx.Relu"(%483) {onnx_node_name = "Relu_442"} : (tensor<1x16x180x320xf32>) -> tensor<1x16x180x320xf32> loc(#loc479) %485 = "onnx.Conv"(%484, %115, %70) { auto_pad = "NOTSET", dilations = [1, 1], group = 1 : si64, kernel_shape = [1, 1], onnx_node_name = "Conv_443", pads = [0, 0, 0, 0], strides = [1, 1]} : (tensor<1x16x180x320xf32>, tensor<4x16x1x1xf32>, tensor<4xf32>) -> tensor<1x4x180x320xf32> loc(#loc480) %486:2 = "onnx.Split"(%485, %1) {axis = 1 : si64, onnx_node_name = "Split_444_31"} : (tensor<1x4x180x320xf32>, tensor<2xi64>) -> (tensor<1x3x180x320xf32>, tensor<1x1x180x320xf32>) loc(#loc481) %487 = "onnx.Add"(%486#0, %181) {onnx_node_name = "Add_445"} : (tensor<1x3x180x320xf32>, tensor<1x3x180x320xf32>) -> tensor<1x3x180x320xf32> loc(#loc482) %488 = "onnx.Clip"(%487, %69, %98) {onnx_node_name = "Clip_446_47"} : (tensor<1x3x180x320xf32>, tensor, tensor) -> tensor<1x3x180x320xf32> loc(#loc483) %489 = "onnx.Transpose"(%488) {onnx_node_name = "Transpose_452", perm = [0, 2, 3, 1]} : (tensor<1x3x180x320xf32>) -> tensor<1x180x320x3xf32> loc(#loc484) %490 = "onnx.Clip"(%486#1, %69, %98) {onnx_node_name = "Clip_447_30"} : (tensor<1x1x180x320xf32>, tensor, tensor) -> tensor<1x1x180x320xf32> loc(#loc485) %491 = "onnx.Transpose"(%490) {onnx_node_name = "Transpose_453", perm = [0, 2, 3, 1]} : (tensor<1x1x180x320xf32>) -> tensor<1x180x320x1xf32> loc(#loc486) return %489, %491, %474, %475, %476, %477 : tensor<1x180x320x3xf32>, tensor<1x180x320x1xf32>, tensor<1x90x160x16xf32>, tensor<1x45x80x20xf32>, tensor<1x23x40x40xf32>, tensor<1x12x20x64xf32> loc(#loc) } loc(#loc) "onnx.EntryPoint"() {func = @main_graph} : () -> () loc(#loc) } loc(#loc) #loc1 = loc("Initializer_1026") #loc2 = loc("Initializer_backbone.features.6.block.2.fc2.bias") #loc3 = loc("Initializer_963") #loc4 = loc("Initializer_945") #loc5 = loc("Initializer_966") #loc6 = loc("Initializer_1011") #loc7 = loc("Initializer_1017") #loc8 = loc("Initializer_388") #loc9 = loc("Initializer_aspp.aspp2.1.weight") #loc10 = loc("Initializer_386") #loc11 = loc("Initializer_backbone.features.5.block.2.fc1.bias") #loc12 = loc("Initializer_1083") #loc13 = loc("Initializer_1082") #loc14 = loc("Initializer_1080") #loc15 = loc("Initializer_944") #loc16 = loc("Initializer_1079") #loc17 = loc("Initializer_1077") #loc18 = loc("Initializer_1076") #loc19 = loc("Initializer_1074") #loc20 = loc("Initializer_1067") #loc21 = loc("Initializer_1071") #loc22 = loc("Initializer_1070") #loc23 = loc("Initializer_400") #loc24 = loc("Initializer_1064") #loc25 = loc("Initializer_1061") #loc26 = loc("Initializer_1058") #loc27 = loc("Initializer_1056") #loc28 = loc("Initializer_backbone.features.15.block.2.fc2.weight") #loc29 = loc("Initializer_1053") #loc30 = loc("Initializer_backbone.features.14.block.2.fc2.weight") #loc31 = loc("Initializer_1049") #loc32 = loc("Initializer_1044") #loc33 = loc("Initializer_1043") #loc34 = loc("Initializer_954") #loc35 = loc("Initializer_974") #loc36 = loc("Initializer_959") #loc37 = loc("Initializer_972") #loc38 = loc("Initializer_backbone.features.5.block.2.fc2.bias") #loc39 = loc("Initializer_998") #loc40 = loc("Initializer_1041") #loc41 = loc("Initializer_983") #loc42 = loc("Initializer_986") #loc43 = loc("Initializer_backbone.features.11.block.2.fc2.weight") #loc44 = loc("Initializer_backbone.features.11.block.2.fc1.bias") #loc45 = loc("Initializer_1014") #loc46 = loc("Initializer_decoder.decode1.gru.ih.0.weight") #loc47 = loc("Initializer_978") #loc48 = loc("Initializer_backbone.features.13.block.2.fc2.bias") #loc49 = loc("Initializer_992") #loc50 = loc("Initializer_1013") #loc51 = loc("Initializer_995") #loc52 = loc("Initializer_951") #loc53 = loc("Initializer_999") #loc54 = loc("Initializer_1023") #loc55 = loc("Initializer_935") #loc56 = loc("Initializer_decoder.decode4.gru.hh.0.weight") #loc57 = loc("Initializer_backbone.features.11.block.2.fc2.bias") #loc58 = loc("Initializer_971") #loc59 = loc("Initializer_1090") #loc60 = loc("Initializer_backbone.features.14.block.2.fc2.bias") #loc61 = loc("Initializer_990") #loc62 = loc("Initializer_decoder.decode1.gru.hh.0.weight") #loc63 = loc("Initializer_752") #loc64 = loc("Initializer_project_mat.conv.bias") #loc65 = loc("Initializer_763") #loc66 = loc("Initializer_948") #loc67 = loc("Initializer_996") #loc68 = loc("Initializer_950") #loc69 = loc("Initializer_969") #loc70 = loc("Initializer_977") #loc71 = loc("Initializer_987") #loc72 = loc("Initializer_backbone.features.14.block.2.fc1.bias") #loc73 = loc("Initializer_1028") #loc74 = loc("Initializer_965") #loc75 = loc("Initializer_809") #loc76 = loc("Initializer_929") #loc77 = loc("Initializer_980") #loc78 = loc("Initializer_1086") #loc79 = loc("Initializer_1050") #loc80 = loc("Initializer_942") #loc81 = loc("Initializer_1004") #loc82 = loc("Initializer_975") #loc83 = loc("Initializer_847") #loc84 = loc("Initializer_1073") #loc85 = loc("Initializer_backbone.features.12.block.2.fc2.weight") #loc86 = loc("Initializer_755") #loc87 = loc("Initializer_1008") #loc88 = loc("Initializer_backbone.features.13.block.2.fc1.bias") #loc89 = loc("Initializer_1034") #loc90 = loc("Initializer_1025") #loc91 = loc("Initializer_1035") #loc92 = loc("Initializer_890") #loc93 = loc("Initializer_953") #loc94 = loc("Initializer_1032") #loc95 = loc("Initializer_backbone.features.6.block.2.fc2.weight") #loc96 = loc("Initializer_decoder.decode1.gru.ih.0.bias") #loc97 = loc("Initializer_1002") #loc98 = loc("Initializer_981") #loc99 = loc("Initializer_389") #loc100 = loc("Initializer_backbone.features.11.block.2.fc1.weight") #loc101 = loc("Initializer_1040") #loc102 = loc("Initializer_1005") #loc103 = loc("Initializer_1001") #loc104 = loc("Initializer_1019") #loc105 = loc("Initializer_1007") #loc106 = loc("Initializer_backbone.features.13.block.2.fc2.weight") #loc107 = loc("Initializer_984") #loc108 = loc("Initializer_decoder.decode3.gru.ih.0.weight") #loc109 = loc("Initializer_project_mat.conv.weight") #loc110 = loc("Initializer_947") #loc111 = loc("Initializer_1059") #loc112 = loc("Initializer_941") #loc113 = loc("Initializer_backbone.features.15.block.2.fc1.weight") #loc114 = loc("Initializer_1038") #loc115 = loc("Initializer_decoder.decode4.gru.hh.0.bias") #loc116 = loc("Initializer_1016") #loc117 = loc("Initializer_1022") #loc118 = loc("Initializer_backbone.features.12.block.2.fc2.bias") #loc119 = loc("Initializer_936") #loc120 = loc("Initializer_decoder.decode2.gru.ih.0.bias") #loc121 = loc("Initializer_decoder.decode4.gru.ih.0.weight") #loc122 = loc("Initializer_1037") #loc123 = loc("Initializer_backbone.features.5.block.2.fc1.weight") #loc124 = loc("Initializer_backbone.features.6.block.2.fc1.bias") #loc125 = loc("Initializer_938") #loc126 = loc("Initializer_1031") #loc127 = loc("Initializer_backbone.features.12.block.2.fc1.weight") #loc128 = loc("Initializer_backbone.features.13.block.2.fc1.weight") #loc129 = loc("Initializer_993") #loc130 = loc("Initializer_1020") #loc131 = loc("Initializer_backbone.features.5.block.2.fc2.weight") #loc132 = loc("Initializer_1029") #loc133 = loc("Initializer_845") #loc134 = loc("Initializer_decoder.decode3.gru.ih.0.bias") #loc135 = loc("Initializer_1047") #loc136 = loc("Initializer_backbone.features.4.block.2.fc1.weight") #loc137 = loc("Initializer_backbone.features.15.block.2.fc1.bias") #loc138 = loc("Initializer_962") #loc139 = loc("Initializer_backbone.features.12.block.2.fc1.bias") #loc140 = loc("Initializer_backbone.features.6.block.2.fc1.weight") #loc141 = loc("Initializer_decoder.decode4.gru.ih.0.bias") #loc142 = loc("Initializer_1068") #loc143 = loc("Initializer_960") #loc144 = loc("Initializer_backbone.features.4.block.2.fc2.bias") #loc145 = loc("Initializer_backbone.features.15.block.2.fc2.bias") #loc146 = loc("Initializer_1062") #loc147 = loc("Initializer_989") #loc148 = loc("Initializer_decoder.decode2.gru.hh.0.weight") #loc149 = loc("Initializer_1010") #loc150 = loc("Initializer_1052") #loc151 = loc("Initializer_backbone.features.4.block.2.fc1.bias") #loc152 = loc("Initializer_1065") #loc153 = loc("Initializer_decoder.decode3.gru.hh.0.weight") #loc154 = loc("Initializer_backbone.features.4.block.2.fc2.weight") #loc155 = loc("Initializer_933") #loc156 = loc("Initializer_decoder.decode3.gru.hh.0.bias") #loc157 = loc("Initializer_decoder.decode2.gru.ih.0.weight") #loc158 = loc("Initializer_1046") #loc159 = loc("Initializer_932") #loc160 = loc("Initializer_956") #loc161 = loc("Initializer_backbone.features.14.block.2.fc1.weight") #loc162 = loc("Initializer_decoder.decode2.gru.hh.0.bias") #loc163 = loc("Initializer_957") #loc164 = loc("Initializer_decoder.decode1.gru.hh.0.bias") #loc165 = loc("Initializer_968") #loc166 = loc("Initializer_1055") #loc167 = loc("Initializer_930") #loc168 = loc("Initializer_939") #loc169 = loc("Transpose_9") #loc170 = loc("Transpose_10") #loc171 = loc("Transpose_11") #loc172 = loc("Cast_0") #loc173 = loc("Div_2") #loc174 = loc("Slice_7") #loc175 = loc("Transpose_8") #loc176 = loc("AveragePool_346") #loc177 = loc("AveragePool_347") #loc178 = loc("AveragePool_348") #loc179 = loc("Transpose_12") #loc180 = loc("Sub_14") #loc181 = loc("Initializer_398") #loc182 = loc("Div_16") #loc183 = loc("Conv_17") #loc184 = loc("Add_19") #loc185 = loc("Clip_22") #loc186 = loc("Div_24") #loc187 = loc("Mul_25") #loc188 = loc("Conv_26") #loc189 = loc("Relu_27") #loc190 = loc("Conv_28") #loc191 = loc("Add_29") #loc192 = loc("Conv_30") #loc193 = loc("Relu_31") #loc194 = loc("Conv_32") #loc195 = loc("Relu_33") #loc196 = loc("Conv_34") #loc197 = loc("Conv_35") #loc198 = loc("Relu_36") #loc199 = loc("Conv_37") #loc200 = loc("Relu_38") #loc201 = loc("Conv_39") #loc202 = loc("Add_40") #loc203 = loc("Conv_41") #loc204 = loc("Relu_42") #loc205 = loc("Conv_43") #loc206 = loc("Relu_44") #loc207 = loc("GlobalAveragePool_45") #loc208 = loc("Conv_46") #loc209 = loc("Relu_47") #loc210 = loc("Conv_48") #loc211 = loc("Add_50") #loc212 = loc("Clip_53") #loc213 = loc("Div_55") #loc214 = loc("Mul_56") #loc215 = loc("Conv_57") #loc216 = loc("Conv_58") #loc217 = loc("Relu_59") #loc218 = loc("Conv_60") #loc219 = loc("Relu_61") #loc220 = loc("GlobalAveragePool_62") #loc221 = loc("Conv_63") #loc222 = loc("Relu_64") #loc223 = loc("Conv_65") #loc224 = loc("Add_67") #loc225 = loc("Clip_70") #loc226 = loc("Div_72") #loc227 = loc("Mul_73") #loc228 = loc("Conv_74") #loc229 = loc("Add_75") #loc230 = loc("Conv_76") #loc231 = loc("Relu_77") #loc232 = loc("Conv_78") #loc233 = loc("Relu_79") #loc234 = loc("GlobalAveragePool_80") #loc235 = loc("Conv_81") #loc236 = loc("Relu_82") #loc237 = loc("Conv_83") #loc238 = loc("Add_85") #loc239 = loc("Clip_88") #loc240 = loc("Div_90") #loc241 = loc("Mul_91") #loc242 = loc("Conv_92") #loc243 = loc("Add_93") #loc244 = loc("Conv_94") #loc245 = loc("Add_96") #loc246 = loc("Clip_99") #loc247 = loc("Div_101") #loc248 = loc("Mul_102") #loc249 = loc("Conv_103") #loc250 = loc("Add_105") #loc251 = loc("Clip_108") #loc252 = loc("Div_110") #loc253 = loc("Mul_111") #loc254 = loc("Conv_112") #loc255 = loc("Conv_113") #loc256 = loc("Add_115") #loc257 = loc("Clip_118") #loc258 = loc("Div_120") #loc259 = loc("Mul_121") #loc260 = loc("Conv_122") #loc261 = loc("Add_124") #loc262 = loc("Clip_127") #loc263 = loc("Div_129") #loc264 = loc("Mul_130") #loc265 = loc("Conv_131") #loc266 = loc("Add_132") #loc267 = loc("Conv_133") #loc268 = loc("Add_135") #loc269 = loc("Clip_138") #loc270 = loc("Div_140") #loc271 = loc("Mul_141") #loc272 = loc("Conv_142") #loc273 = loc("Add_144") #loc274 = loc("Clip_147") #loc275 = loc("Div_149") #loc276 = loc("Mul_150") #loc277 = loc("Conv_151") #loc278 = loc("Add_152") #loc279 = loc("Conv_153") #loc280 = loc("Add_155") #loc281 = loc("Clip_158") #loc282 = loc("Div_160") #loc283 = loc("Mul_161") #loc284 = loc("Conv_162") #loc285 = loc("Add_164") #loc286 = loc("Clip_167") #loc287 = loc("Div_169") #loc288 = loc("Mul_170") #loc289 = loc("Conv_171") #loc290 = loc("Add_172") #loc291 = loc("Conv_173") #loc292 = loc("Add_175") #loc293 = loc("Clip_178") #loc294 = loc("Div_180") #loc295 = loc("Mul_181") #loc296 = loc("Conv_182") #loc297 = loc("Add_184") #loc298 = loc("Clip_187") #loc299 = loc("Div_189") #loc300 = loc("Mul_190") #loc301 = loc("GlobalAveragePool_191") #loc302 = loc("Conv_192") #loc303 = loc("Relu_193") #loc304 = loc("Conv_194") #loc305 = loc("Add_196") #loc306 = loc("Clip_199") #loc307 = loc("Div_201") #loc308 = loc("Mul_202") #loc309 = loc("Conv_203") #loc310 = loc("Conv_204") #loc311 = loc("Add_206") #loc312 = loc("Clip_209") #loc313 = loc("Div_211") #loc314 = loc("Mul_212") #loc315 = loc("Conv_213") #loc316 = loc("Add_215") #loc317 = loc("Clip_218") #loc318 = loc("Div_220") #loc319 = loc("Mul_221") #loc320 = loc("GlobalAveragePool_222") #loc321 = loc("Conv_223") #loc322 = loc("Relu_224") #loc323 = loc("Conv_225") #loc324 = loc("Add_227") #loc325 = loc("Clip_230") #loc326 = loc("Div_232") #loc327 = loc("Mul_233") #loc328 = loc("Conv_234") #loc329 = loc("Add_235") #loc330 = loc("Conv_236") #loc331 = loc("Add_238") #loc332 = loc("Clip_241") #loc333 = loc("Div_243") #loc334 = loc("Mul_244") #loc335 = loc("Conv_245") #loc336 = loc("Add_247") #loc337 = loc("Clip_250") #loc338 = loc("Div_252") #loc339 = loc("Mul_253") #loc340 = loc("GlobalAveragePool_254") #loc341 = loc("Conv_255") #loc342 = loc("Relu_256") #loc343 = loc("Conv_257") #loc344 = loc("Add_259") #loc345 = loc("Clip_262") #loc346 = loc("Div_264") #loc347 = loc("Mul_265") #loc348 = loc("Conv_266") #loc349 = loc("Conv_267") #loc350 = loc("Add_269") #loc351 = loc("Clip_272") #loc352 = loc("Div_274") #loc353 = loc("Mul_275") #loc354 = loc("Conv_276") #loc355 = loc("Add_278") #loc356 = loc("Clip_281") #loc357 = loc("Div_283") #loc358 = loc("Mul_284") #loc359 = loc("GlobalAveragePool_285") #loc360 = loc("Conv_286") #loc361 = loc("Relu_287") #loc362 = loc("Conv_288") #loc363 = loc("Add_290") #loc364 = loc("Clip_293") #loc365 = loc("Div_295") #loc366 = loc("Mul_296") #loc367 = loc("Conv_297") #loc368 = loc("Add_298") #loc369 = loc("Conv_299") #loc370 = loc("Add_301") #loc371 = loc("Clip_304") #loc372 = loc("Div_306") #loc373 = loc("Mul_307") #loc374 = loc("Conv_308") #loc375 = loc("Add_310") #loc376 = loc("Clip_313") #loc377 = loc("Div_315") #loc378 = loc("Mul_316") #loc379 = loc("GlobalAveragePool_317") #loc380 = loc("Conv_318") #loc381 = loc("Relu_319") #loc382 = loc("Conv_320") #loc383 = loc("Add_322") #loc384 = loc("Clip_325") #loc385 = loc("Div_327") #loc386 = loc("Mul_328") #loc387 = loc("Conv_329") #loc388 = loc("Add_330") #loc389 = loc("Conv_331") #loc390 = loc("Add_333") #loc391 = loc("Clip_336") #loc392 = loc("Div_338") #loc393 = loc("Mul_339") #loc394 = loc("Conv_340") #loc395 = loc("Relu_341") #loc396 = loc("GlobalAveragePool_342") #loc397 = loc("Conv_343") #loc398 = loc("Sigmoid_344") #loc399 = loc("Mul_345") #loc400 = loc("Split_349") #loc401 = loc("Concat_350") #loc402 = loc("Conv_351") #loc403 = loc("Sigmoid_352") #loc404 = loc("Split_353") #loc405 = loc("Sub_359") #loc406 = loc("Mul_360") #loc407 = loc("Mul_354") #loc408 = loc("Concat_355") #loc409 = loc("Conv_356") #loc410 = loc("Tanh_357") #loc411 = loc("Mul_361") #loc412 = loc("Add_362") #loc413 = loc("Concat_363") #loc414 = loc("Resize_365") #loc415 = loc("Slice_371") #loc416 = loc("Concat_372") #loc417 = loc("Conv_373") #loc418 = loc("Relu_374") #loc419 = loc("Split_375") #loc420 = loc("Concat_376") #loc421 = loc("Conv_377") #loc422 = loc("Sigmoid_378") #loc423 = loc("Split_379") #loc424 = loc("Sub_385") #loc425 = loc("Mul_386") #loc426 = loc("Mul_380") #loc427 = loc("Concat_381") #loc428 = loc("Conv_382") #loc429 = loc("Tanh_383") #loc430 = loc("Mul_387") #loc431 = loc("Add_388") #loc432 = loc("Concat_389") #loc433 = loc("Resize_391") #loc434 = loc("Slice_397") #loc435 = loc("Concat_398") #loc436 = loc("Conv_399") #loc437 = loc("Relu_400") #loc438 = loc("Split_401") #loc439 = loc("Concat_402") #loc440 = loc("Conv_403") #loc441 = loc("Sigmoid_404") #loc442 = loc("Split_405") #loc443 = loc("Sub_411") #loc444 = loc("Mul_412") #loc445 = loc("Mul_406") #loc446 = loc("Concat_407") #loc447 = loc("Conv_408") #loc448 = loc("Tanh_409") #loc449 = loc("Mul_413") #loc450 = loc("Add_414") #loc451 = loc("Concat_415") #loc452 = loc("Resize_417") #loc453 = loc("Concat_418") #loc454 = loc("Conv_419") #loc455 = loc("Relu_420") #loc456 = loc("Split_421") #loc457 = loc("Concat_422") #loc458 = loc("Conv_423") #loc459 = loc("Sigmoid_424") #loc460 = loc("Split_425") #loc461 = loc("Sub_431") #loc462 = loc("Mul_432") #loc463 = loc("Mul_426") #loc464 = loc("Concat_427") #loc465 = loc("Conv_428") #loc466 = loc("Tanh_429") #loc467 = loc("Mul_433") #loc468 = loc("Add_434") #loc469 = loc("Transpose_448") #loc470 = loc("Transpose_449") #loc471 = loc("Transpose_450") #loc472 = loc("Transpose_451") #loc473 = loc("Concat_435") #loc474 = loc("Resize_437") #loc475 = loc("Concat_438") #loc476 = loc("Conv_439") #loc477 = loc("Relu_440") #loc478 = loc("Conv_441") #loc479 = loc("Relu_442") #loc480 = loc("Conv_443") #loc481 = loc("Split_444") #loc482 = loc("Add_445") #loc483 = loc("Clip_446") #loc484 = loc("Transpose_452") #loc485 = loc("Clip_447") #loc486 = loc("Transpose_453") #loc487 = loc(fused[#loc180, #loc181])