|
--- |
|
license: cc-by-4.0 |
|
language: |
|
- as |
|
- bn |
|
- brx |
|
- doi |
|
- kn |
|
- mai |
|
- ml |
|
- mr |
|
- ne |
|
- pa |
|
- sa |
|
- ta |
|
- te |
|
library_name: transformers |
|
pipeline_tag: text-to-speech |
|
tags: |
|
- text-to-speech |
|
--- |
|
# VITS TTS for Indian Languages |
|
|
|
This repository contains a VITS-based Text-to-Speech (TTS) model fine-tuned for Indian languages. The model supports multiple Indian languages and a wide range of speaking styles and emotions, making it suitable for diverse use cases such as conversational AI, audiobooks, and more. |
|
|
|
--- |
|
|
|
## Model Overview |
|
|
|
The model `ai4bharat/vits_rasa_13` is based on the VITS architecture and supports the following features: |
|
- **Languages**: Multiple Indian languages. |
|
- **Styles**: Various speaking styles and emotions. |
|
- **Speaker IDs**: Predefined speaker profiles for male and female voices. |
|
|
|
--- |
|
|
|
## Installation |
|
|
|
```bash |
|
pip install transformers torch |
|
``` |
|
|
|
--- |
|
|
|
## Usage |
|
|
|
Here's a quick example to get started: |
|
|
|
```python |
|
import soundfile as sf |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True).to("cuda") |
|
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/vits_rasa_13", trust_remote_code=True) |
|
|
|
text = "ਕੀ ਮੈਂ ਇਸ ਹਫਤੇ ਦੇ ਅੰਤ ਵਿੱਚ ਰੁੱਝਿਆ ਹੋਇਆ ਹਾਂ?" # Example text in Punjabi |
|
speaker_id = 16 # PAN_M |
|
style_id = 0 # ALEXA |
|
|
|
inputs = tokenizer(text=text, return_tensors="pt").to("cuda") |
|
outputs = model(inputs['input_ids'], speaker_id=speaker_id, emotion_id=style_id) |
|
sf.write("audio.wav", outputs.waveform.squeeze(), model.config.sampling_rate) |
|
print(outputs.waveform.shape) |
|
``` |
|
|
|
--- |
|
## Supported Languages |
|
|
|
- `Assamese` |
|
- `Bengali` |
|
- `Bodo` |
|
- `Dogri` |
|
- `Kannada` |
|
- `Maithili` |
|
- `Malayalam` |
|
- `Marathi` |
|
- `Nepali` |
|
- `Punjabi` |
|
- `Sanskrit` |
|
- `Tamil` |
|
- `Telugu` |
|
|
|
## Speaker-Style Identifier Overview |
|
|
|
| Speaker Name | Speaker ID | Style Name | Style ID | |
|
|--------------|------------|-------------|----------| |
|
| ASM_F | 0 | ALEXA | 0 | |
|
| ASM_M | 1 | ANGER | 1 | |
|
| BEN_F | 2 | BB | 2 | |
|
| BEN_M | 3 | BOOK | 3 | |
|
| BRX_F | 4 | CONV | 4 | |
|
| BRX_M | 5 | DIGI | 5 | |
|
| DOI_F | 6 | DISGUST | 6 | |
|
| DOI_M | 7 | FEAR | 7 | |
|
| KAN_F | 8 | HAPPY | 8 | |
|
| KAN_M | 9 | NEWS | 10 | |
|
| MAI_M | 10 | SAD | 12 | |
|
| MAL_F | 11 | SURPRISE | 14 | |
|
| MAR_F | 12 | UMANG | 15 | |
|
| MAR_M | 13 | WIKI | 16 | |
|
| NEP_F | 14 | | | |
|
| PAN_F | 15 | | | |
|
| PAN_M | 16 | | | |
|
| SAN_M | 17 | | | |
|
| TAM_F | 18 | | | |
|
| TEL_F | 19 | | | |
|
|
|
--- |
|
|
|
## Citation |
|
|
|
If you use this model in your research, please cite: |
|
|
|
```bibtex |
|
@article{ai4bharat_vits_rasa_13, |
|
title={VITS TTS for Indian Languages}, |
|
author={Ashwin Sankar}, |
|
year={2024}, |
|
publisher={Hugging Face} |
|
} |
|
``` |