|
--- |
|
tags: |
|
- sentence-summarization |
|
- multilingual |
|
- nlp |
|
- indicnlp |
|
datasets: |
|
- ai4bharat/IndicSentenceSummarization |
|
language: |
|
- as |
|
- bn |
|
- gu |
|
- hi |
|
- kn |
|
- ml |
|
- mr |
|
- or |
|
- pa |
|
- ta |
|
- te |
|
license: |
|
- mit |
|
widget: |
|
- जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। </s> <2hi> |
|
|
|
|
|
|
|
--- |
|
|
|
# MultiIndicSentenceSummarization |
|
|
|
This repository contains the [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint finetuned on the 11 languages of [IndicSentenceSummarization](https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization) dataset. For finetuning details, |
|
see the [paper](https://arxiv.org/abs/2203.05437). |
|
<ul> |
|
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> |
|
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding. </li> |
|
<li> Trained on large Indic language corpora (431K sentences). </li> |
|
<li> All languages, have been represented in Devanagari script to encourage transfer learning among the related languages. </li> |
|
</ul> |
|
|
|
|
|
|
|
## Using this model in `transformers` |
|
|
|
``` |
|
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM |
|
from transformers import AlbertTokenizer, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarization", do_lower_case=False, use_fast=False, keep_accents=True) |
|
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarization", do_lower_case=False, use_fast=False, keep_accents=True) |
|
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicSentenceSummarization") |
|
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicSentenceSummarization") |
|
|
|
# Some initial mapping |
|
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") |
|
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") |
|
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") |
|
|
|
# To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] |
|
# First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". |
|
inp = tokenizer("जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids |
|
|
|
# For generation. Pardon the messiness. Note the decoder_start_token_id. |
|
|
|
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3, num_beams=5, length_penalty=0.8, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) |
|
|
|
# Decode to get output strings |
|
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
print(decoded_output) # जम्मू एवं कश्मीरः अनंतनाग में सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादी ढेर |
|
|
|
# Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library. |
|
|
|
``` |
|
# Note: |
|
If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. |
|
|
|
## Benchmarks |
|
|
|
Scores on the `IndicSentenceSummarization` test sets are as follows: |
|
|
|
Language | Rouge-1 / Rouge-2 / Rouge-L |
|
---------|---------------------------- |
|
as | 60.46 / 46.77 / 59.29 |
|
bn | 51.12 / 34.91 / 49.29 |
|
gu | 47.89 / 29.97 / 45.92 |
|
hi | 50.7 / 28.11 / 45.34 |
|
kn | 77.93 / 70.03 / 77.32 |
|
ml | 67.7 / 54.42 / 66.42 |
|
mr | 48.06 / 26.98 / 46.5 |
|
or | 45.2 / 23.66 / 43.65 |
|
pa | 55.96 / 37.2 / 52.22 |
|
ta | 58.85 / 38.97 / 56.83 |
|
te | 54.81 / 35.28 / 53.44 |
|
|
|
|
|
## Citation |
|
|
|
If you use this model, please cite the following paper: |
|
``` |
|
@inproceedings{Kumar2022IndicNLGSM, |
|
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, |
|
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, |
|
year={2022}, |
|
url = "https://arxiv.org/abs/2203.05437" |
|
} |
|
``` |
|
|